在《The Impact of Popularity Bias on Fairness and Calibration in Recommendation》paper中,提出了polularity bias与miscalibration之间具有一定的关联:

摘要

最近,在fairness-aware的推荐系统上收获了许多关注,包括:在不同users或groups上提供一致performance的fairness。如果推荐不能公平地表示某一个确定user group的品味,而其它user groups则与他们的偏好一致时,则一个推荐系统可以被认为是unfair的。另外,我们使用一个被称为“miscalibration”的指标来measure一个推荐算法响应用户的真实偏好程度,我们会考虑多个算法在miscalibration上的不同程度。在推荐上一个知名类型的bias是polularity bias,在推荐中有少量流行items被过度呈现(over-represented),而其它items的majority不会获得大量曝光。我们推测,popularity bias是导致在推荐中的miscalibration的一个重要因素。我们的实验结果使用两个真实数据集,展示了不同user groups间algorithmic polularity bias和他们在popular items上的兴趣程度的强相关性。另外,我们展示了,一个group受algorithmic polularity bias的影响越多,他们的推荐是miscalibrated也越多。最后,我们展示了具有更大popularity bias趋势的算法会具有更大的miscalibration。

1.介绍

在推荐生成中近期关注的一个热点是:fairness。推荐的fairness在推荐的不同domain、不同users或user groups的特性(比如:protected vs. unprotected)、以及系统设计者的目标下具有不同的含义。例如,[12]中将fairness定义成不同user groups间accuracy一致性。在他们的实验中,观察到,特定groups(比如:女性)会比男性获得更低的accuracy结果。

用来衡量推荐质量的一个metrics是:calibration,它可以衡量推荐分发与用户评分过的items的一致性。例如,如果一个用户对70%的action movies以及30%的romance movies评过分,那么,该用户在推荐中也期望看到相似的pattern[27]。如果该ratio与用户profile不同,我们则称推荐是miscalibrated。Miscalibration自身不能被当成unfair,因为它只能简单意味着推荐不够个性化。然而,如果不同的users或user groups在它们的推荐中都具有不同程度的miscalibration,这可能意味着一个user group的unfair treatment。例如,[28]中定义了一些fairness metrics,它关注于不同user groups间estimation error的一致性效果。

协同推荐系统的一个显著限制是popularity bias:popular items会被高频推荐,在一些cases中,推荐甚至超过它们的popularity,而大多数其它items不能获得合适比例的关注。我们将algorithmic popularity bias定义成:一个算法扩大了在不同items上已存在的popularity差异。我们通过popularity lift指标来measure该增强效应(amplification),它表示在input和output间平均item polularity的差异。比如,关于popularity bias可能会有疑惑,可能有以下原因:long-tail items(non-popular)对于生成一个用户偏好的完整理解来说很重要。另外,long-tail推荐也可以被理解成是一个社会福利(social good);存在popularity bias的market会缺乏机会来发现更多obscure的产品,从而被大量大品牌和知名artists占据。这样的market会越来越同质化(homogeneous),为创新提供更少的机会。

在本paper中,我们推荐:popularity bias是导致推荐列表miscalibration的一个重要因素。

。。。

2.相关工作

3.Popularity bias和miscalibration

3.1 Miscalibration

miscalibration用来measure用户真实偏好与推荐算法间差异程度。前面提到,如果在所有用户上都存在miscalibration,可能意味着个性化算法的failure。当不同user groups具有不同程度的miscalibration时,意味着对特特定user groups存在unfair treatment。

。。。

为了measure 推荐的miscalibration,我们使用[27]中的metric。假设u是一个user,i是一个item。对于每个item i,存在一个features集合C来描述它。例如,一首歌可能是pop、jazz,或一个电影的genres可以是action、romance、comedy等。我们使用c来表示这些独立categories之一。我们假设每个user会对一或多个items进行评分,这意味着会对属于这些items的features c感兴趣。对于每个user u的两个分布:一个是u评分过的所有items间的categories c的分布,另一个是u的所有推荐items间categories c的分布:

  • \(p_u(c \| u)\):在过去用户u评分过的items集合\(\Gamma\)上的feature c的分布为:
\[p_u(c | u) = \frac{\sum\limits_{i \in \Gamma w_{u,i} p(c|i)}}{\sum\limits_{i \in \Gamma} w_{u,i}}\]

…(1)

其中\(w_{u,i}\)是item i的权重,表示user u评分的频率。本paper中可以将w设置为1. 更关注不同分布上的差异,而非user profile的时序方面.

  • \(q_u(c \| u)\):推荐给user u的items list的feature c上的分布:
\[q_u(c|u) = \frac{\sum\limits_{i \in \wedge} w_r(i) p(c|i)}{ \sum\limits_{i \in \wedge} w_r(i)}\]

…(2)

\(\wedge\)表示推荐items集合。item i的weight则表示推荐中的rank r(i)。比如:MRR或nDCG。此外我们将\(w_r\)设置为1, 确保\(q_u\)和\(p_u\)可比。

在两个分布间的dissimilarity程度用来计算推荐中的miscalibration。常见的比方法有:统计假设检验。本文则使用KL散度来作为miscalibration metric。在我们的数据中,许多profiles没有ratings,这会导致在\(p_u\)上出现零值,同样具有推荐列表只关注特定features,对于一些users也在\(q_u\)上也会出现零值。对于没有observations的情况KL散度是undefined。作为替代,我们使用Hellinger distance H,它适用于存在许多0的情况。miscalibration的定义如下:

\[MC_u(p_u, q_u) = H(p_u, q_u) = \frac{|| \sqrt{p_u} - \sqrt{q_u}||_2}{\sqrt{2}}\]

…(3)

通过定义发现,H distance满足三角不等式。\(\sqrt{2}\)可以确保\(H(p_u, q_u) \leq 1\)。

对于每个group G的整体的miscalibration metric \(MC_G\)可以通过在group G中所有users u的\(MC_u(p,q)\)的平均来获得。例如:

\[MC_G(p, q) = \frac{\sum_{u \in G} MC_u(p_u, q_u)}{|G|}\]

….(4)

fairness

和[27]相似,本文将unfair定义为:对于不同user groups具有不同程度miscalibration时,则存在unfair。存在许多方式来定义一个user group,可以基于以下features:gender、age、occupation(职业)、education等。相似的,我们也可以基于它们的兴趣相似程度来定义user group。例如:对某些category上的兴趣度。

3.2 rating data中的Popularity Bias

推荐算法受popularity bias影响。也就是说,少量items会被推荐给多个users,而大多数其它items不会获得大量曝光。该bias可能是因为rating data的天然特性会倾向于popular items,因为该bias会存在algorithmic amplification。图1-b展示了两个user A和B的rated items的百分比。我们可以看到,user A的推荐被popularity bias高度影响,而user B在它们推荐中则不存在popularity bias的增强效应。

在许多领域,rating data会倾向于popular items——许多流行items会获得大量ratings,而其余items则具有更少的ratings。图2展示了item popularity的长尾分布。在其它datasets中也有相似的分布。流行的items之所以流行是有原因的,algorithmic popularity bias通常会将该bias放大到一个更大的程度。

并非每个用户都在流行items上具有不同程度的兴趣[4,22]。也会存在用户只能非流行、利基(niche)的items感兴趣。推荐算法也需解决这些用户的需求。图3展示了在不同user profiles上rated items的average popularity。用户首先会基于items的average popularity进行sort,接着绘出data。在movielens上,在图的最右侧和右侧,表示存在少量user,它们具有大量average item popularity,中间部分大量用户的分布具有0.1到0.15之间的average item popularity。在Yahoo Movies中,具有少量users具有low-popularity profiles,否则,distribution是相似的。这些图表明,用户在popular items上具有不同程度的偏向。

由于原始rating data上的imbalance,通常在许多情况下,算法会增强该bias,从而过度推出popular items,使得它们具有更大的机会被更多users进行评分。这样的推荐循环会导致rich-get-richer、poor-get-poorer的恶性循环。然而,并非每个推荐算法对popularity bias具有相同的放大能力(ampli€cation power)。下一部分描述了,测量推荐算法所传播的popularity bias的程度。经验上,会根据popularity bias增强来评估不同算法的performance。

4.方法

略.

参考

介绍

alibaba在《Personalized Re-ranking for Recommendation》介绍了一种reranking模型。

摘要

ranking是推荐系统的核心问题,通常,一个ranking函数会从labeled dataset中学到,并会为每个单独item产生一个ranking score。然而,它可能是次优的(sub-optimal),因为scoring function被应用在每个独立item上,没有显式考虑item间的相互影响,以及用户偏好/意图间的不同。因此,这里提出了一种个性化的re-ranking模型。通过直接使用一个已经存在的ranking feature vectors,提出的re-ranking模型可以很轻易地部署成在任意ranking算法之后跟着的一个follow-up模块。它会通过采用一个transformer结构来对在推荐列表中的所有items信息进行有效编码,来直接优化整个推荐列表。特别的,transformer使用一种self-attention机制,它直接建模在整个list中任意items pair间的关系。我们证实,通过引入pre-trained embedding来为不同用户学习个性化编码函数。在offline和online的实验结果上均有较大提升。

1.介绍

通常,在推荐系统中的ranking不会考虑在list列表中其它items(特别是挨着的items)的影响。尽管pairwise和listwise l2r方法尝试解决该问题,但它们只关注充分利用labels(比如:click-through data)来优化loss function,并没有显式建模在feature space中items间的相互影响。

一些工作[1,34,37]尝试显式建模items间的相互影响,重新定义由之前ranking算法给出的intial list,这被称为“re-ranking”。构建该scoring function的主要思路是:将intra-item patterns编码成feature space。state-of-the-arts的方法有:RNN-based(比如:GlobalRerank[37]和DLCM[1])。它们会将初始列表(intial list)按顺序feed给RNN-based结构,并在每个timestep上输出编码后的vector。然而,RNN-based方法对建模在list中items间的交叉的能力有限。之前编码的item的feature信息会沿着编码距离退化(degrade)。同时,由于并行化,transformer的编码过程比RNN-based方法更高效。

除了items间的交叉外,交叉的个性化编码函数可以被考虑用于re-ranking。对推荐系统进行re-ranking是user-specific的,决取于用户的偏好。对于一个对价格敏感的用户,在re-ranking模型中,对“price”特征间进行交叉更重要。常见的global encoding function可能不是最优的,因为它会忽略每个用户在特征分布间的不同。例如,当用户关注价格对比时,具有不同价格的相似items趋向于在list中更聚集。当用户没有明显的购买意图时,推荐列表中的items趋向于更分散。因此,我们在transformer结构中引入一种个性化模块来表示关于item interactions用户偏好和意图。在我们的个性化re-ranking模型中,可以同时捕获:在推荐列表中的items、以及用户间的交叉。

2.相关工作

我们的工作主要是,重新定义由base ranker给出的initial ranking list。在这些base rankers间,l2r是一种广泛使用的方法。l2r方法可以根据loss function分为三类:point-wise、pairwise、listwise。所有这些方法可以学习一个global scoring function,对于一个特定feature的权重会被全局学到。然而,这些features的weights应可以意识到:不仅items间的交叉、以及user和items间的交叉。

【1-3,37】的工作主要是re-ranking方法。它们使用整个intial list作为input,并以不同方式建模在items间的复杂依赖。[1]使用unidirectional GRU来将整个list的信息编码到每个item的表示。[37]使用LSTM、[3]使用pointer network,不仅编码整个list信息,也会由decoder生成ranked list。对于这些使用GRU or LSTM的方法来编码items间的依赖,encoder的能力通过encoding distance进行限制。在我们的paper中,我们使用transfomer-like encoder,它基于self-attention机制以O(1) distance来建模任意两个items间的交叉。另外,对于那些使用decoder来顺序生成ordered list的方法,它们不适合online ranking系统,因为需要有严格的延迟。由于sequential decoder使用在time t-1上选中的item作为input来在time t上选择item,它不能并列行,需要n倍的inferences,其中n是output list的长度。[2]提出了一种groupwise scoring function,它可以对scoring进行并列化,但它的计算开销很高,因为它会枚举在list中所有可能的item组合。

3.re-ranking模型

在本节中,我们首先给出了一些关于l2r以及re-ranking的先验知识。接着对问题公式化来求解。概念如表1所示。

表1:

l2r方法在ranking中被广泛使用,为推荐和信息检索生成一个ordered list。l2r方法会基于items的feature vector学习一个global scoring function。有了该global function,l2r方法会通过在candidate set中的每个item。该global function通常通过对以下loss L最小化得到:

\[L = \sum\limits_{r \in R} l( \lbrace y_i, P(y_i | x_i;\theta) | i \in I_r \rbrace )\]

…(1)

其中:

  • R是对于推荐所有用户请求的集合。
  • \(I_r\)是对于请求\(r \in R\)的items的candidate set
  • \(x_i\)表示的是item i的feature space
  • \(y_i\)是在item i上的label (例如:click or not)
  • \(P(y_i \mid x_i; \theta)\)是由ranking model给出的对于参数\(\theta\)的预测点击概率
  • l是通过\(y_i\)和\(P(y_i \mid x_i; \theta)\)计算得到的loss

然而,对于学习一个好的scoring function来说,\(x_i\)是不足够的。我们发现推荐系统的ranking应考虑以下额外信息:

  • (a)item-pairs间的相互影响 [8,35]
  • (b)users和items间的交叉(interactions)

在item-pairs间的相互影响,可以通过使用已经存在的LTR模型为请求r从inital list \(S_r=[i_1, i_2, \cdots, i_n]\)直接学到。[1][37][2][3]提出了方法来更好利用item-pairs间的相互信息。然而,很少研究去关注users和items间的interactions。item-pairs的相互影响,对于不同用户来说是不同的。在本paper中,我们引入了一种个性化矩阵(personlized matrix) PV来学习user-specific encoding function,它可以建模item-pairs间的个性化相互影响。模型的loss function可以被公式化成等式(2)。

\[L = \sum\limits_{r \in R} l( \lbrace y_i, P(y_i \mid X, PV; \hat{\theta}) | i \in S_r \rbrace )\]

…(2)

其中:

  • \(S_r\)是由之前ranking model给出的inital list
  • \(\hat{\theta}\)是我们的re-ranking model的参数
  • X是在list中所有items的feature matrix

4.个性化re-ranking模型

在本节中,我们首先给出了关于PRM(Personalized Re-ranking Model)的总览。接着详细介绍每一部分。

4.1 模型架构

PRM的结构如图1所示。模型包含三个部分:

  • input layer
  • encoding layer
  • output layer

它会将由之前的ranking模型生成的关于items的intial list作为input,并输出一个re-ranked list。详细结构分挨个介绍。

图片名称

4.2 Input Layer

input layer的目的是,为在initial list中的所有items准备representations,并将它feed给encoding layer。首先,我们具有一个固定长度的intial sequential list \(S=[i_1, i_2, \cdots, i_n]\),它由之前的ranking方法给出。与之前ranking方法相同,我们具有一个raw feature matrix \(X \in R^{n \times d_{feature}}\),在X中的每一行表示每个\(i \in S\)的item对应的raw feature vector \(x_i\)。

Personalized Vector(PV)

对两个items的feature vectors进行encoding,可以建模它们之间的相互影响,但这些影响进行扩展将会影响那些未知用户。因而需要学习user-specific encoding function。尽管整个intial list的representation可以部分影响用户的偏好,但对于一个强大的personlized encoding function来说它是不够的。如图1(b)所示,我们将raw feature matrix \(X \in R^{n \times d_{feature}}$与一个个性化矩阵\)PV \in R^{n \times d_{pv}}\(进行concat来获取中间(intermediate)的embedding matrix\)E’ \in R^{n \times (d_{feature} + d_{pv})}$$,如等式(3)。PV通过一个pre-trained model生成,它会在下一节中介绍。PV的performance增益可以由evaluation部分被介绍。

\[E' = \left[ \begin{array} x_{i_1}; pv_{i_1} \\ x_{i_2}; pv_{i_2} \\ \cdots \\ x_{i_n}; pv_{i_n} \end{array} \right]\]

…(3)

position embedding(PE)

为了利用在intial list中的顺序信息,我们将一个position embedding \(PE \in R^{n \times (d_{feature}+d_{pv})}\)注入到input embedding中。接着,该embedding矩阵可以用等式(4)计算。本paper中会使用一个可学习的PE,它的效果要比[28]中固定的position embedding要略微好些。

\[E'' = \left[ \begin{array} x_{i_1}; pv_{i_1} \\ x_{i_2}; pv_{i_2} \\ \cdots \\ x_{i_n}; pv_{i_n} \end{array} \right] + \left[ \begin{array} pe_{i_1} \\ pe_{i_2} \\ \cdots \\ pe_{i_n} \end{array} \right]\]

…(4)

最后,我们使用一个简单的feed-forward网络来将feature matrix \(E'' \in R^{n \times (d_{feature} + d_{pv}}\)转成\(E \in R^{n \times d}\),其中:d是encoding layer中每个input vector中潜在维度(latent dimensionality)。E可以通过等式(5)公式化:

\[E = EW^E + b^E\]

…(5)

其中,\(W^E \in R^{(d_{feature} + d_{pv}) \times d}\)是投影矩阵,\(b^E\)是d维向量。

4.3 Encoding Layer

如图1(a)所示,encoding layer的目标是,将item-pairs间的相互影响、以及其它额外信息进行集成,这些额外信息包含:用户偏好、intial list S的ranking顺序。为了达到该目标,我们采用Transfomer-like encoder,因于Transformer已经在许多NLP任务中被证明是有效的,特别是在机器翻译中。Transformer中的self-attention机制特别适合我们的re-ranking任务,因为它可以直接建模任意两个items间的相互影响,忽略掉两者间的距离。没有了距离衰减(distance decay),Transfomer可以捕获更多在intial list中离得较远的items间的交叉。如图1(b)所示,我们的encoding模块包含了\(N_x\)个关于Transformer encoder的块(blocks)。每个块(block)(如图1(a)所示)包含了一个attention layer和一个Feed-Forward Network(FFN) layer。

Attention Layer

attention函数如等式(6)所示:

\[Attention(Q,K,V) = softmax(\frac{QK^T}{\sqrt{d}})V\]

…(6)

其中矩阵Q, K, V各自表示queries、keys和values。d是matrix K的维度,为了避免内积的大值。softmax被用于将内积值转化成为value vector V添加权重。在我们的paper中,我们使用self-attention,其中:Q, K和V从相同的矩阵进行投影。

为了建模更复杂的相互影响,我们使用multi-head attention,如等式(7)所示:

\[S' = MH(E) = Concat(head_1, \cdots, head_h) W^O \\ head_i = Attention(EW^Q, EW^K, EW^V)\]

…(7)

其中,\(W^Q, W^K, W^V \in R^{d \times d}\)。\(W^O \in R^{hd \times d_{model}}\)是投影矩阵。h是headers的数目。h的不同值间的影响会在下一节被研究。

FFN(Feed-forward Network)

该position-wise FFN的函数主要是为了使用在input vectors不同维度间的非线性(non-linearity)和交叉(interacitons)来增强模型。

对Encoding Layer进行Stacking

这里,我们使用attention模块,后面跟着position-wise FFN作为一块(block)Transformer encoder。通过对多个blocks进行stacking,我们可以得到更复杂和高阶的相互信息(mutual information)。

4.4 Output Layer

output layer的函数主要为每个item \(i = i_1, \cdots, i_n\)生成一个score。(如图1(b)所示Score(i))我们在softmax layer之后使用一个linear layer。softmax layer的output是每个item的点击概率,被标记为:\(P(y_i \mid X, PV; \hat{\theta})\)。我们使用\(P(y_i \mid X, PV, \hat{\theta})\)作为\(Score(i)\)来在one-step中对items进行re-rank。Score(i)的公式为:

\[Score(i) = P(y_i \mid X, PV; \hat{\theta}) = softmax(F^{(N_x)}W^F + b^F), i \in S_r\]

…(8)

其中:

  • \(F^{(N_x)}\)是Transformer encoder的\(N_x\)个blocks的output
  • \(W^F\)是可学习的投影矩阵
  • \(b^F\)是bias term
  • n是在intial list中的items数目

在训练过程中,我们使用click-through data作为label并最小化等式(9)的loss function:

\[L = - \sum\limits_{r \in R} \sum\limits_{i \in S_r} y_i log(P(y_i | X, PV; \hat{\theta})\]

…(9)

4.5 个性化模块

在本节中,我们会引入该方法来计算个性化矩阵PV,它表示user和items间的interactions。使用PRM来学习PV的最简单办法是,通过re-ranking loss以end-to-end的方式进行学习。在re-ranking任务中学到的task-specific representation缺少用户的一般偏好。因此,我们可以利用一个pre-trained NN来产生用户个性化embeddings PV,它接着被用做PRM模型的额外features。pre-trained NN可以从平台的所有click-through logs上学到。图1(c)展示了pre-trained模型的结构。sigmoid layer会输出:在给定所有行为历史\((H_u)\)和用户的side information时,关于item i、user u的点击概率\((P(y_i \mid H_u, u; \theta')\)。用户的side information包括:gender、age和purchasing level等。模型的loss通过一个point-wise cross-entropy函数来计算,如等式(10)所示:

\[L = \sum\limits_{i \in D} (y_i log( P(y_i | H_u, u; \theta')) + (1-y_i) log(1-P(y_i | H_u,u;\theta')\]

…(10)

其中:

  • D是user u在平台上展示的items set。
  • \(\theta'\)是pre-trained model的参数矩阵
  • \(y_i\)是item i的label

受[13]的启发,我们在sigmoid layer之前采用hidden vector作为personlized vector \(pv_i\)(如图1c所示),feed到我们的PRM模型中。

图1c展示了pre-trained模型的可能架构,其它模型如:FM, FFM, DeepFM, DCN, FNN和PNN也可以做为生成PV的替代方法。

5.实验

参考

介绍

youtube在2019公布了它的MMoE多目标排序系统《Recommending What Video to Watch Next: A Multitask Ranking System》。

摘要

在本paper中,我们介绍了一个大规模多目标排序系统,用于在工业界视频分享平台上推荐下一个要观看的视频。该系统会面临许多挑战,包括:存在多个竞争性的排序目标(ranking objectives),以及在user feedback中的隐式选择偏差(implicit selection biases)。为了解决这些挑战,我们探索了多种软参数共享技术(soft-parameter sharing techniques),比如:Multi-gate Mixture-of-Experts,以便对多个排序目标进行有效最优化(optimize)。另外,我们会采用一个Wide&Deep框架来减缓选择偏差(selection biases)。我们演示了我们提出的技术可以在youtube推荐质量上产生有效提升。

介绍

在本paper中,我们描述了一个关于视频推荐的大规模排序系统。也就是说:在给定用户当前观看的一个视频的情况下,推荐该用户可能会观看和享受的下一个视频。通常推荐系统会遵循一个two-stage设计:candidate generation、ranking。该paper主要关注ranking。在该stage,推荐器会具有数百个候选,接着会应用一个复杂的模型来对它们进行排序,并将最可能观看的items推荐给用户。

设计一个真实世界的大规模视频推荐系统充满挑战:

  • 通常有许多不同的、有时甚至有冲突的待优化目标。例如,我们想推荐用户点击率高、愿与朋友共享的、包括观看高的视频
  • 在该系统中通常有隐式偏差(implicit bias)。例如,一个用户通常点击和观看一个视频,仅仅只因为它的排序高,而不是因为用户最喜欢它。因此,从当前系统的数据生成来进行模型训练会是有偏的,这会造成(feedback loop effect)效应[33]。如何有效和高效地学习减少这样的biases是个开放问题。

为了解决这样的挑战,我们为ranking system提出了一个有效的多任务神经网络架构,如图1所示。它会扩展Wide&Deep模型,通过采用Multi-gate Mixture-of-Experts(MMoE) [30]来进行多任务学习。另外,它会引入一个浅层塔结构(shallow tower)来建模和移除选择偏差。我们会应用该结构到视频推荐中:给定当前用户观看的视频,推荐下一个要观看的视频。我们在实验和真实环境中均有较大提升。

图1 我们提出的ranking系统的模型架构。它会消费user logs作为训练数据,构建Multi-gate Mixture-of-Experts layers来预测两类user behaviors,比如:engagement和satisfaction。它会使用一个side-tower来纠正ranking selection bias。在顶部,会组合多个预测到一个最终的ranking score

特别的,我们首先将我们的多任务目标分组成两类:

  • 1) 参与度目标(engagement objectives),比如:用户点击(user clicks),推荐视频的参与度
  • 2) 满意度目标(satisfaction objectives),比如:用户喜欢一个视频的程度,在推荐上留下一个评分

为了学习和估计多种类型的用户行为,我们使用MMoE来自动化学习那些跨潜在冲突的多目标共享的参数。Mixture-of-Experts[21]架构会将input layer模块化成experts,每个expert会关注input的不同部分。这可以提升从复杂特征空间(由多个模块生成)中学到的表示。

接着,通过使用多个gating network,每个objective可以选择experts来相互共享或不共享。

为了建模和减小来自有偏训练数据的选择偏差(selection bias,比如:position bias),我们提出了添加一个shallow tower到主模型中,如图1左侧所示。shallow tower会将input与selection bias(比如:由当前系统决定的ranking order)相关联,接着输出一个scalar作为一个bias项来服务给主模型的最终预测。该模型架构会将训练数据中的label分解成两部分

  • 1.从主模型中学到的无偏用户效用(unbiased user utility)
  • 2.从shallow tower学到的估计倾向评分(estimated propensity score)

我们提出的模型结构可以被看成是Wide&Deep模型的一个扩展,shallow tower表示Wide部分。通过直接学习shallow tower和main model,我们可以具有优点:学习selection bias,无需对随机实验resort来获取propensity score。

为了评估我们提出的ranking系统,我们设计了offline和live实验来验证以下的效果:

  • 1) 多任务学习
  • 2) 移除一个常见的selection bias (position bias)

对比state-of-art的baseline方法,我们展示了我们提出的框架的改进。我们在Youtube上进行实验。

主要贡献有:

  • 介绍了一种end-to-end的排序系统来进行视频推荐
  • 将ranking问题公式化成一个多目标学习问题,并扩展了Multi-gate Mixture-of-Experts架构来提升在所有objectives上的效果
  • 我们提出使用一个Wide&Deep模型架构来建模和缓和position bias
  • 我们会在一个真实世界的大规模视频推荐系统上评估我们的方法,以及相应的提升

2.相关工作

3.问题描述

本节,我们首先描述了推荐下一次要观看的视频的问题,我们引入了一个two-stage setup。

除了上述提到的使用隐式反馈来构建ranking systems挑战外,对于真实的大规模视频推荐问题,我们需要考虑以下因素:

  • 多模态特征空间(Multimodal feature space)。在一个context-aware个性化推荐系统中,我们需要使用从多模态(例如:视频内容、预览图、音频、标题、描述、用户demographics)来学习候选视频的user utility。从多模态特征空间中为推荐学习表示,对比其它机器学习应用来说是独一无二的挑战。它分为两个难点:
    • 1) 桥接来自low-level的内容特征中的语义gap,以进行内容过滤(content filtering)
    • 2) 为协同过滤学习items的稀疏表示
  • 可扩展性(Scalability)。可扩展性相当重要,因为我们正构建一个数十亿用户和视频的推荐系统。模型必须在训练期间有效训练,在serving期间高效运行。尽管ranking system在每个query会对数百个candidates进行打分,真实世界场景的scoring需要实时完成,因为一些query和context信息不仅仅需要学习数十亿items和users的表示,而且需要在serving时高效运行。

回顾下我们的推荐系统的目标是:在给定当前观看的视频和上下文(context)时,提供一个关于视频的ranked list。为了处理多模态特征空间,对于每个视频,我们会抽取以下特征(比如:视频的meta-data和视频内容信号)来作为它的表示。对于context,我们会使用以下特征(比如:人口统计学user demographics、设备device、时间time、地点location)。

为了处理可扩展性,如[10]描述相似,我们的推荐系统具有两个stages:候选生成、ranking。。。

3.1 候选生成

我们的视频推荐系统会使用多种候选生成算法,每种算法会捕获query video和candidate video间的某一种相似性。例如,一个算法会通过将query video的topics相匹配来生成candidates;另一个算法则会基于该视频和query video一起被观察的频次来检索candiate videos。我们构建了与[10]相似的一个序列模型通过用户历史来生成个性化候选视频。我们也会使用[25]中提到的技术来生成context-aware high recall relevant candiadtes。最后,所有的candidates都会放到一个set中,给ranking system进行打分。

3.2 Ranking

我们的ranking系统会从数百个candidates中生成一个ranked list。不同于candidate generation,它会尝试过滤掉大多数items并只保留相关items,ranking system的目标是提供一个ranked list以便具有最高utility的items可以展示在top前面。因此,我们使用大多数高级机器学习技术常用的NN结构,以便能足够的建模表现力来学习特征关联和utility关系。

4.模型结构

4.1 系统总览

我们的ranking system会从两类用户反馈数据中学习:

  • 1) engagement行为(比如:点击和观看)
  • 2) satisfaction行为(比如:喜欢(likes)和dismissals)

给定每个candidate,ranking system会使用该candidate、query和context的的特征作为输入,学习预测多个user behaviors。

对于问题公式,我们采用l2r的框架。我们会将ranking问题建模成:一个具有多个objectives的分类问题和回归问题的组合。给定一个query、candidate和context,ranking模型会预测用户采用actions(比如:点击、观看、likes和dismissals)的概率

为每个candidate做出预测的方法是point-wise的方法。作为对比,pair-wise或list-wise方法可以在两个或多个candidates的顺序上做出预测。pair-wise或list-wise方法可以被用于潜在提升推荐的多样性(diversity)。然而,我们基于serving的考虑主要使用point-wise ranking。在serving时,point-wise ranking很简单,可以高效地扩展到大量candidates上。作为比较,对于给定的candidates集合,pair-wise或list-wise方法需要对pairs或lists打分多次,以便找到最优的ranked list,限制了它们的可扩展性。

4.2 ranking objectives

我们使用user behaviors作为训练labels。由于用户可以对推荐items具有不同类型的behaviors,我们将我们的ranking system设计成支持多个objectives。每个objective的目标是预测一种类型的与user utility相关的user behavior。为了描述,以下我们将objectives分离成两个类别:engagement objectives和satisfaction objectives。

Engagement objectives会捕获user behaviors(比如:clicks和watches)。我们将这些行为的预测公式化为两种类型的任务:对于像点击这样行为的二元分类任务,以及对于像时长(time spent)相关的行为的回归任务。相似的,对于satisfaction objectives,我们将:与用户满意度相关的行为预测表示成二元分类任务或者回归任务。例如,像点击/like这样的行为可以公式化成一个二元分类任务,而像rating这样的行为被公式化成regression任务。对于二元分类任务,我们会计算cross entropy loss。而对于regression任务,我们会计算squared loss。

一旦多个ranking objectives和它们的问题类型被定下来,我们可以为这些预测任务训练一个multitask ranking模型。对于每个candidate,我们将它们作为多个预测的输入,并使用一个形如加权乘法的组合函数(combination function)来输出一个组合分(combined score)。该权值通过人工调参,以便在user engagements和user satisfactions上达到最佳效果。

4.3 使用MMoE建模任务关系和冲突

多目标的ranking systems常使用一个共享的bottom模型架构。然而,当任务间的关联很低时,这样的hard-parameter sharing技术有时会伤害到多目标学习。为了缓和多目标间的冲突,我们采用并扩展了一个最近发布的模型架构:MMoE(Multi-gate Mixture-of-Experts)【30】。

MMoE是一个soft-parameter sharing模型结构,它的设计是为了建模任务的冲突(conflicts)与关系(relation)。通过在跨多个任务上共享experts,它采用Mixture-of-Experts(MoE)结构到多任务学习中,而对于每个task也具有一个gating network进行训练。MMoE layer的设计是为了捕获任务的不同之处,对比起shared-bottom模型它无需大量模型参数。关键思路是,使用MoE layer来替代共享的ReLU layer,并为每个task添加一个独立的gating network。

对于我们的ranking system,我们提出在一个共享的hidden layer的top上添加experts,如图2b所示。这是因为MoE layer可以帮助学习来自input的模态信息(modularized information)。当在input layer的top上、或lower hidden layers上直接使用它时,它可以更好地建模多模态特征空间。然而,直接在input layer上应用MoE layer将极大增加模型training和serving的开销。这是因为,通常input layer的维度要比hidden layers的要更高

图2 使用MMoE来替换shared-bottom layers

我们关于expert networks的实现,等同于使用ReLU activations的multilayer perceptrons。给定task k、 prediction \(y_k\)、以及最后的hidden layer \(h^k\),对于task k的具有n个experts output的MMoE layer为:\(f^k(x)\),可以用以下的等式表示:

\[y_k = h^k (f^k(x)), \\ where \ \ f^k(x) = \sum\limits_{i=1}^n g_{(i)}^k(x) f_i(x)\]

…(1)

其中:

  • \(x \in R^d\)是一个lower-level shared hidden embedding
  • \(g^k\)是task k的gating network
  • \(g_{(i)}^k(x) \in R^n\)是第i个entry
  • \(f_i(x)\)是第i个expert

gating networks是使用一个softmax layer的关于input的简单线性转换。

\[g^k(x) = softmax(W_{g^k} x)\]

…(2)

其中:

\(W_{g^k} \in R^{n \times d}\)是线性变换的自由参数

与[32]中提到的sparse gating network对比,experts的数目会大些,每个训练样本只利用top experts,我们会使用一个相当小数目的experts。这样的设置是为了鼓励在多个gating networks间共享experts,并高效进行训练

4.4 建模和移除Position和Selection Baises

隐式反馈被广泛用于训练l2r模型。大量隐式反馈从user logs中抽取,从而训练复杂的DNN模型。然而,隐式反馈是有偏的,因为它由已经存在的ranking system所生成。Position Bias以及其它类型的selection biases,在许多不同的ranking问题中被研究和验证[2,23,41]。

在我们的ranking系统中,query是当前被观看过的视频,candidates是相关视频,用户倾向于点击和观看更接近toplist展示的视频,不管它们实际的user utility——根据观看过的视频的相关度以及用户偏好。我们的目标是移除从ranking模型中移除这样的position bias。在我们的训练数据中、或者在模型训练期间,建模和减小selection biases可以产生模型质量增益,打破由selection biases产生的feedback loop。

我们提出的模型结构与Wide&Deep模型结构相似。我们将模型预测分解为两个components:

  • 来自main tower的一个user-utility component
  • 以及来自shallow tower的一个bias component

特别的,我们使用对selection bias有贡献的features来训练了一个shallow tower,比如:position bias的position feature,接着将它添加到main model的最终logit中,如图3所示。

  • 在训练中,所有曝光(impressions)的positions都会被使用,有10%的feature drop-out rate来阻止模型过度依赖于position feature
  • 在serving时,position feature被认为是缺失的(missing)。

为什么我们将position feature和device feature相交叉(cross)的原因是:不同的position biases可以在不同类型的devices上观察到

图3 添加一个shallow side tower来学习selection bias(比如:position bias)

5.实验结果

本节我们描述了我们的ranking system实验,它会在youtube上推荐next watch的视频。使用由YouTube提供的隐式反馈,我们可以训练我们的ranking models,并进行offline和live实验。

Youtube的规模和复杂度是一个完美的测试。它有19亿月活用户。每天会有数千亿的user logs关于推荐结果与用户活动的交互。Youtube的一个核心产品是,提供推荐功能:为给定一个观看过的视频推荐接下来要看的,如图4所示。

图4 在youtube上推荐watch next

5.2.3 Gating Network分布

为了进一步理解MMoE是如何帮助multi-objective optimization的,我们为在每个expert上的每个task在softmax gating network中绘制了累积概率。

5.3 建模和减小Position Bias

使用用户隐式反馈作为训练数据的一个主要挑战是,很难建模在隐式反馈和true user utility间的gap。使用多种类型的隐式信号和多种ranking objectives,在serving时在item推荐中我们具有更多把手(knobs)来tune以捕获从模型预测到user utility的转换。然而,我们仍需要建模和减小在隐式反馈中普遍存在的biases。例如:在用户和当前推荐系统交互中引起的selection biases。

这里,我们使用提出的轻量级模型架构,来评估如何来建模和减小一种类型的selection biases(例如:position bias)。我们的解决方案避免了在随机实验或复杂计算上花费太多开销。

5.3.1 用户隐反馈分析

为了验证在我们训练数据中存在的position bias,我们对不同位置做了CTR分析。图6表明,在相对位置1-9的CTR分布。所图所示,我们看到,随着位置越来越低,CTR也会降得越来越低。在更高位置上的CTR越高,这是因为推荐更相关items和position bias的组合效果。我们提出的方法会采用一个shallow tower,我们展示了该方法可以分离user utility和position bias的学习。

图6 位置1-9的CTR

5.3.2 Baseline方法

为了评估我们提出的模型架构,我们使用以下的baseline方法进行对比。

  • 直接使用position feature做为一个input feature:这种简单方法已经在工业界推荐系统中广泛使用来消除position bias,大多数用于线性l2r rank模型中。
  • 对抗学习(Adversarial learning):受域适应(domain adaptation)和机器学习公平性(machine learning fairness)中Adversarial learning的广泛使用的启发,我们使用一个相似的技术来引入一个辅助任务(auxiliary task),它可以预测在训练数据中的position。随后,在BP阶段,我们不让梯度传递到主模型(main model)中,以确保主模型的预测不依赖于position feature。

5.3.3 真实流量实验结果

表2展示了真实流量实验结果。我们可以看到提出的方法通过建模和消除position biases可以极大提升参与度指标。

5.3.4 学到的position biases

图7展示了每个position学到的position biases。从图中可知,越低的position,学到的bias越小。学到的biases会使用有偏的隐式反馈(biased implicit feedback)来估计倾向评分(propensity scores)。使用足够训练数据通过模型训练运行,可以使我们有效学到减小position biases。

图7 每个position上学到的position bias

5.4 讨论

参考

youtube在2019发布了它的双塔模型《Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations》:

介绍

在许多服务上(视频推荐、app推荐、在线广告定向),推荐系统帮助用户发现感兴趣内容。在许多情况下,这些系统在一个低延时的条件下,会将数十亿用户与一个相当大的内容语料(数百万到数十亿)相连接。常用的方法是retrieval-and-ranking策略,这是一个two-stage系统。首先,一个可扩展的retrieval模型会从一个大语料中检索出一小部分相关items,接着一个成熟的ranking模型会对这些retrieved items基于一或多个目标(objectives: 比如clicks或user-ratings)进行rerank。在本文中,主要关注retrieval system。

给定一个{user, context, item}三元组,构建一个可扩展的retrieval模型的一个常用方法是:

  • 1) 分别为{user,context}和{item}各自学习query和item representations
  • 2) 在query和item representations间使用一个simple scoring function(比如:dot product)来得到对该query合适的推荐

context通常表示具有动态特性的variables,比如:天时长(time of day),用户所用设备(devices)。representation learning问题通常有以下两个挑战:

  • 1) items的corpus对于工业界规模的app来说相当大
  • 2) 从用户反馈收集得到的训练数据对于某些items相当稀疏

这会造成模型预测对于长尾内容(long-tail content)具有很大variance。对于这种cold-start问题,真实世界系统需要适应数据分布的变化来更好面对新鲜内容(fresh content)

受Netflix prize的启发,MF-based modeling被广泛用在构建retrieval systems中学习query和item的latent factors。在MF框架下,大量推荐研究在学习大规模corpus上解决了许多挑战。常见的思路是,利用query和item的content features。在item id外,content features很难被定义成大量用于描述items的features。例如,一个video的content features可以是从video frames中抽取的视觉features或音频features。MF-based模型通常只能捕获features的二阶交叉,因而,在表示具有许多格式的features collection时具有有限阶(power)。

在最近几年,受deep learning的影响,大量工作采用DNNs来推荐。Deep representations很适合编码在低维embedding space上的复杂的user states和item content features。在本paper中,采用two-tower DNNs来构建retrieval模型。图1提供了two-tower模型构建的图示,左和右分别表示{user, context}和{item}。two-tower DNN从multi-class classification NN(一个MLP模型)泛化而来[19],其中,图1的right tower被简化成一个具有item embeddings的single layer。因而,two-tower模型结构可以建模当labels具有structures或content features的情形。MLP模型通常使用许多来自一个fixed的item语料表中sampled negatives进行训练。作为对比,在使用了deep item tower后,对于计算所有item embeddings来说,由于item content features以及共享的网络参数,在许多negatives上进行抽样并训练通常是无效的。

图片名称

图1 一个2-tower DNN模型,它会学习query和candidate表示

我们考虑batch softmax optimization:其中item probability会通过在一个random batch上的所有items上计算得到。然而,在我们的实验中所示:batch softmax具有sampling bias倾向,在没有任何纠正的情况下,可能会严重限制模型效果。importance sampling和相应的bias reduction在MLP模型[4,5]中有研究。受这些工作的启发,我们提出了使用estimated item frequency的batch softmax来纠正sampling bias。对比于MLP模型,其中output item vocabulary是固定的(stationary),我们会根据vocabualary和分布随着时间变化来target streaming data。我们提出了一种新算法通过gradient descent来概述(sketch)和估计(estimate) item freqency。另外,我们使用bias-corrected modeling,并将它扩展到在youtube推荐上构建个性化retrieval system。我们也引入了一个sequential training strategy,用来吸收streaming data,与indexing和serving组件一起工作。

主要4个contributions:

  • Streaming Frequency Estimation:我们提出了一个新算法,根据vocabulary和分布偏移(distribution shifts)来估计来自data stream的item frequency。我们提供了分析结果来展示该estimation的variance和bias。我们也提供了仿真来演示我们的方法在捕捉数据动态性上的效率
  • Modeling Framework:我们提供了一个通用的建模框架来构建大规模检索系统。特别的,我们针对batch softmax会在cross entropy loss中引入estimated item frequency来减小在in-batch items上的sampling bias
  • Youtube recommendation:我们描述了如何使用modeling framework来为youtube 推荐构建一个大规模的检索系统。我们引入了end-to-end 系统,包括:training、indexing、serving组件
  • offline和Live实现:我们在两个真实数据集上执行offline实验,并演示了samping bias correction的效果。我们也展示了为youtube构建的索引系统,并在真实流量实验上提升了engagement指标。

2.相关工作

2.1 content-aware&Neural Recommenders

对于提升泛化(generalization)和解决cold-start问题来说,使用users和items的content features很关键。一些研究【23】在经典MF框架上采用content features。例如,generalized MF模型(比如:SVDFeatuer和FM),可以被用来采用item content features。这些模型能捕获bi-linear,比如:second-order的特征交叉。在最近几年,DNNs对于提升推荐的accuracy很有效。对比于传统因子分解方法,DNNs由于具有高度非线性,可以很有效地博获复杂的特征交叉。He [21]直接采用CF、NCF架构来建模user-item interactions。在NCF结构中,user和items embeddings被concatenated并被传入一个multi-layer NN来获得最终预测。我们的工作与NCF有两方法区别:

  • 1) 我们利用一个two-tower NN来建模user-item interactions,以便可以在sub-linear时间内实现在大语料items的inference。
  • 2) 学习NCF依赖于point-wise loss(比如:squared或log loss),而我们会引入multi-class softmax loss以及显式的model item frequency。

在其它work中,Deep RNN(比如:LSTM)被用于采用时序信息和推荐的历史事件,例如:[12,14]。除了单独的user和item representations外,另一部分设计NN的工作主要关注于学习rank systems。最近,multi-task learning是主要技术,对于复杂推荐器上优化多目标【27,28】。Cheng[9]引入了一个wide-n-deep framework来对wide linear models和deep NN进行jointly training。

2.2 Extreme classification

在设计用于预测具有大规模输出空间的labels的模型时,softmax是一个常用函数。从语言模型到推荐模型的大量研究,都关注于训练softmax多分类模型。当classes的数目相当大时,大量采用的技术是:抽样classes的一个subset。Bengio[5]表明:一个好的sampling distribution应该与模型的output distribution相适配。为了避免计算sampling distribution的并发症,许多现实模型都采用一个简单分布(比如:unigram或uniform)作为替代。最近,Blanc[7]设计了一个有效的adaptive kernel based的sampling方法。尽管sampled softmax在许多领域很成功,但不能应用在具有content features的label的case中。这种case中的Adaptive sampling仍然是一个开放问题。许多works表明,具有tree-based的label结构(比如:hierarchical softmax),对于构建大规模分类模型很有用,可以极大减小inference time。这些方法通常需要一个预定义的基于特定categorical attributes的tree structure。因此,他们不适用于包含大量input features的情况。

2.3 two-tower模型

构建具有two tower的NN在NLP中最近很流行,比如: 建模句子相似度(sentence similarities),response suggestions,text-based IR等。我们的工作主要有,在大规模推荐系统上构建two-tower模型的有效性验证。对比于许多语言任务,我们的任务在更大corpus size上,这在Youtube这样的场景下很常见。通过真实实验发现,显式建模item frequency对于在该setting中提升retrieval accuracy很重要。然而,该问题并没有很好地解决。

3.模型框架

考虑推荐问题的一个常见设定,我们具有queries和items的一个集合。queries和items通过feature vectors \(\lbrace x_i \rbrace_{i=1}^{N}\)和\(\lbrace y_i \rbrace_{j=1}^M\)表示。这里,\(x_i \in X, y_i \in Y\),是多种features的混合(比如:sparse IDs和dense features),可以在一个非常高维的空间中。这里的目标是:为给定一个query检索一个items的subset。在个性化场景中,我们假设:user和context在\(x_i\)中被完全捕获。注意,我们从有限数目的queries和items开始来解释该情形。我们的模型框架没有这样的假设。

我们的目标是构建具有两个参数化embedding functions的模型:

\[u: X \times R^d \rightarrow R^k, v: Y \times R^d \rightarrow R^k\]

将模型参数\(\theta \in R^d\)、query和candidates的features映射到一个k维的embedding space上。如图1所示,我们关注于的u, v通过两个DNN表示的case。模型的output是两个embeddings的inner product,命名为:

\[s(x,y) = <u(x,\theta), v(y,\theta)>\]

目标是,从一个具有T个样本的训练集中学习模型参数\(\theta\):

\[\mathscr{T} := \lbrace (x_i, y_i, R_i) \rbrace_{i=1}^T\]

其中,\((x_i, y_i)\)表示query \(x_i\)和item \(y_i\)的query,\(r_i \in R\)是每个pair相关的reward

相应的,retrieval问题可以被看成是一个具有continuous reward的multi-class分类问题。在分类任务中,每个label的重要性等价,对于所有postive pairs \(r_i=1\)在recommenders中,\(r_i\)可以被扩展成:对于一个特定candidate捕获到的user engagement的不同程度。例如,在新闻推荐中,\(r_i\)可以是一个用户花费在特定某个文章上的时间。给定一个query x,对于从M个items \(\lbrace y_i \rbrace_{j=1}^M\)选择候选y的概率分布,常用的选择是基于softmax function,例如:

\[P(y|x; \theta) = \frac{e^{s(x,y)}}{\sum_{j \in [M]} e^{s(x,y_j)}}\]

…(1)

接着进一步加入rewards \(r_i\),我们考虑上下面的weighted log-likelihood作为loss function:

\[L_T(\theta) := - \frac{1}{T} \sum\limits_{i \in [T]} r_i \cdot log(P(y_i | x_i; \theta))\]

…(2)

当M非常大时,在计算partition function时很难包括所有的candidate examples,例如:等式(1)中的分母。我们主要关注处理streaming data。因此,与从一个固定corpus中抽样得到负样本(negatives)的case进行训练MLP模型不同,对于从相同batch中的所有queries来说,我们只考虑使用in-batch items[22]作为负样本(negatives)。更确切地说,给定一个关于B pairs \(\lbrace (x_i, y_I, r_i) \rbrace_{i=1}^B\)的mini-batch,对于每个\(i \in [B]\),该batch softmax是:

\[P_B (y_i | x_i; \theta) = \frac{e^{s(x_i,y_i)}}{ \sum\limits_{i \in [B]} e^{s(x_i, y_i)}}\]

…(3)

在我们的目标应用中,in-batch items通常从一个power-law分布中抽样得到。因此,等式(3)在full softmax上会引入了一个大的bias:流行的items通常会过度被当成negatives,因为概率高。受在sampled softmax model[5]中logQ correction的启发,我们将每个logit \(s(x_i, y_i)\)通过下式进行纠正:

\[s^c(x_i, y_i) = s(x_i, y_j) - log(p_j)\]

这里,\(p_j\)表示在一个random batch中item j的sampling概率。

有了该correction,我们有:

\[P_B^c (y_i | x_i; \theta) = \frac{e^{s^c(x_i,y_i)}}{e^{s^c(x_i,y_i)} + \sum_{j \in [B],j \neq i} e^{s^c(x_i,y_i)}}\]

接着将上述term代入到等式(2),产生:

\[L_B(\theta) := -\frac{1}{B} \sum\limits_{i \in [B]} r_i \cdot log(P_B^c(y_i | x_i; \theta))\]

…(4)

它是batch loss function。使用learning rate \(\gamma\)运行SGD会产生如下的参数更新:

\[\theta \leftarrow \theta - \gamma \cdot \nabla_B (\theta)\]

…(5)

注意,\(L_B\)不需要一个关于queries和candidates的固定集合。相应的,等式(5)可以被应用到streaming training data上,它的分布随时间变化。我们提出的方法,详见算法1.

图片名称

算法1

最近邻搜索(NN Search):一旦embedding function u, v被学到,inference包含两个step:

  • 1) 计算query embedding:\(u(x,\theta)\)
  • 2) 在item embeddings(通过embedding function v预计算好)上执行最近邻搜索

另外,我们的模型框架提供了选项,可以在inference时选择任意items。不再计算在所有items上的dot product,低时耗retrieval通常基于一个基于hashing技术高效相似度搜索系统,特别的,高维embeddings的compact representations通过quantization、以及end-to-end learning和coarse和PQ来构建。

归一化(Normalization)和温度(Temperature)

经验上,我们发现,添加embedding normalization,比如:\(u(x,\theta) \leftarrow \frac{u(x,\theta)}{ \| u(x,\theta) \|_2}, u(y,\theta) \leftarrow \frac{v(y,\theta)}{\| v(y,\theta) \|_2}\),可以提升模型的trainability,从而产生更好的retrieval quality

另外,一个Temperature \(\tau\)被添加到每个logit上来对predictions进行削尖(sharpen):

\[s(x,y) = \frac{<u(x,\theta), v(y,\theta)>} {\tau}\]

实际上,\(\tau\)是一个超参数,用于调节最大化检索指标(比如:recall或precision)。

4.Streaming Frequancy估计

在本节中,我们详细介绍在算法1中所使用的streaming frequency estimation。

考虑到关于random batches的一个stream,其中每个batch包含了一个items集合。该问题为:估计在一个batch中每个item y的hitting的概率。一个重要的设计准则是:当存在多个training jobs(例如:workers)时,具有一个完全分布式的估计来支持dstributed training。

在单机或分布式训练时,一个唯一的global step,它表示trainer消费的data batches的数目,与每个sampled batch相关。在一个分布式设定中,global step通常通过parameter servers在多个workers间同步。

5. Youtube的Neural检索系统

我们在Youtube中使用提出的模型框架。该产品会基于在某个用户观看的某个video上生成视频推荐。推荐系统包含两个stages:nomination(或:retrieval)、ranking。在nomination stage,我们具有多个nominators,每个nomiator都会基于一个user和一个seed video生成成百上千的视频推荐。这些videos会按顺序打分,并在下游的一个NN ranking模型中进行rerank。在本节中,我们关注在retrieval stage中一个额外nominator。

5.1 模型总览

图片名称

图2

我们构建的youtube NN模型包含了query和candidates。图2演示了总的模型结构。在任意时间点上,用户正观看的某个video,(例如:seed video),提供了一个关于用户当前兴趣的一个很强信号。因此,我们会利用 关于seed video的features一个大集合以及用户观看历史。candidate tower的构建用来从candidate video features中学习。

training label。视频点击(video clicks)被用于正样本(positive labels)。另外,对于每个click,我们构建了一个reward \(r_i\)来表示关于该video的不同程度的user engagement。另一方面,\(r_i=1\)表示观看了整个视频。reward被用于example weight,如等式(4)所示。

VIdeo Features。video features在categorical和dense features中同时被用到。categorical features的样本包含了:Video Id和Channel Id。对于这两个entities的每个来说,会创建一个embedding layer来将categorical feature映射到一个dense vector上。通常,我们会处理两种categorical features。一些features(例如:Video Id)在每个video上具有一个categorical value,因此,我们具有一个embedding vector来表示它们。另外,一个feature(比如:Video topics)可以是一个关于categorical values的sparse vector,最终的embedding表示在sparse vector中的values的任一个的embeddings的加权求和。为了处理out-of-vocabulary entities,我们会将它们随机分配到一个固定的hash buckets集合中,并为每一个学习一个embedding。Hash buckets对于模型很重要,可以捕获在Youtube中的新实体(new entities),特别是5.2节所使用的sequential training。

User Features。我们使用一个user的观看历史来捕获在seed video外的user兴趣。一个示例是,用户最近观看过的k个video ids的一个sequence。我们将观看历史看成是一个bag of words (BOW),通过video id embeddings的平均来表示它。在query tower中,user和seed video features在input layer进行融合(fuse),接着传入到一个feed forward NN中。

对于相同类型的IDs,embedding可以在相关的features间共享。例如,video id embeddings的相同集合被用于:seed video、candidate video以及用户之前观看过的video。我们也做了不共享embedding的实验,但没有观看大大的模型效果提升。

5.2 Sequential training

我们的模型在tensorflow上实验,使用分布式GD在多个workers和parameter servers上训练。在Youtube中,新的training data每天都会生成,training datasets会每天重新组织。该模型训练会以如下方式使用上sequential结构。trainer会从最老的training examples开始顺序消费数据,直到最近天的训练数据,它会等待下一天的训练数据到达。这种方式下,模型可以赶得上最新的数据分布偏移(shift)。训练数据本质上由trainer以streaming方式消费。我们使用算法2 (或算法3)来估计item frequency。等式(6)的在线更新使得模型可以适应新的frequency分布。

图片名称

算法2

图片名称 算法3

5.3 Indexing和模型serving

在retrieval系统中的index pipeline会为online serving周期性地创建一个tensorflow savemodel。index pipeline会以三个stages构建:candidate example generation、embedding inference、embedding indexing,如图3所示。在第1个stage,会基于特定准则从youtube corpus中选中的videos集合。它们的features被fetched、以及被添加到candidate examples中。在第二个stage,图2的right tower用来计算来自candidate examples的embeddings。在第三个stage,我们会基于tree和quantized hashing技术来训练一个tensorflow-based embedding index model。

图片名称

图3

6.实验

本节中,我们展示了item frequency estimation的模型框架的有效性。

6.1 Frequency估计的仿真

为了评估算法2&3的有效性。我们开始一个仿真研究,我们首先使用每个提出的算法来拟合一个固定的item分布,接着在一个特定step后变更分布。为了更精准,在我们的setting中,我们使用一个关于M items的固定set,每个item根据概率\(q_i \propto i^2\)(其中:\(i \in [M], \sum_i q_i = 1\))进行独立抽样。

。。。略

参考

criteo也开放了它们的dpp方法:《Tensorized Determinantal Point Processes for Recommendation》, 我们来看下:

摘要

DPP在机器学习中的关注度越来越高,因为它可以在组合集合上提供一种优雅的参数化模型。特别的,在DPP中的所需的参数数目只与ground truth(例如:item catalog)的size成平方关系,而items的数目增长是指数式的。最近一些研究表明,DPPs对于商品推荐和(basket completion)任务 来说是很高效的模型,因为他们可以同时在一个集合中解释diversity和quality。我们提出了一种增强的DPP模型:tensorized DPP,它特别适合于basket completion任务。我们利用来自张量分解(tensor factorization)的思想,以便将模型进行定制用在next-item basket completion任务上,其中next item会在该模型的一个额外维度中被捕获。我们在多个真实数据集上评估了该模型,并找出:tensorized DPP在许多settings中,比许多SOTA模型提供了更好的predictive quality。

1.介绍

在averge shooping basket中items数的增加,对于在线零售商来说是一个主要关注点。该问题存在许多处理策略。而本工作主要关注于:算法会生成一个items集合,它们能适合补全用户的当前shopping basket。

Basket analysis和completion是机器学习中非常老的任务。许多年来,关联规则挖掘(association rule mining)是SOTA的。尽管该算法具有不同变种,主要的准则是涉及到:通过统计在过往observations中的共现,来计算购买一个额外商品的条件概率。由于计算开销和健壮性,现代方法更喜欢i2i CF,或者使用LR基于二分类购买得分来预测一个用户是否会构买一个item。

标准CF方法必须被扩展到能正确捕获商品间的diversity。在basket completion中,需要插入一定形式的diversity,因为推荐过于相似的items给用户并不好。实践者经常通过添加constraints到items推荐集合中来缓和该问题。例如,当使用类目信息时,在裤子被添加到basket时可以强制推荐相匹配的鞋子,而如果按天然的共同出售(co-sale) patterns会导致其它裤子的推荐。在这种情况中,diversity推荐的出现不会通过学习算法直接驱动,但可以通过side information和专家知识。Ref【28】提出了一种有效的Bayesian方法来学习类目的权重,当类目已知时。

然而,不依赖额外信息直接学习合适的diversity更令人关注。不使用side information,直接从数据中的diversity的naive learning,会得到一个高的计算开销,因为可能集合的数目会随类目中items数目而指数增长。该issue是no-trivial的,即使当我们只想往已存在集合中添加一个item时,而当我们想添加超过一个item来达到最终推荐set的diversity时会更难。

【9, 10】使用基于DPPs的模型来解决该组合问题。DPPs是一个来自量子物理学的优雅的关于排斥(repulsion)的概率模型,在机器学习上被广泛使用[17]。它允许抽样一个diverse的点集,相似度(similarity)和流行度(popularity)会使用一个称为“kernel”半正定矩阵进行编码。关于marginalization和conditioning DPPs有很多高效算法提供。从实用角度,学习DPP kernel是个挑战,因为相关的likelihood是non-convex的,从items的observed sets中学到它是NP-hard的。

对于basket completion问题,天然地会考虑:那些转化成售买的baskets的sets。在该setting中,DPP通过一个size为\(p \times p\)的kernel matrix进行参数化,其中p是catalog(item目录表)的size。因而,参数的数目会随着p的二次方进行增长,计算复杂度、预测、抽样会随着p的三次方增长。由于学习一个full-rank的DPP是很难的,[10]提出了通过对kernel限制到low rank来对DPP正则化(regularization)。该regularization会在不伤害预测效果下提升generalization,并可以提供更diversity的推荐。在许多settings中,预测质量也会被提升,使得DPP对于建模baskets问题是一个理想的工具。再者,对比起full-rank DPP,low-rank假设也提供了更好的runtime效果

另外,由于DPP的定义,正如在Model部分所描述的,low-rank假设对于kernel来说,意味着任意可能的baskets会比那些概率为0的选中rank要具有更好的items。该方法对于大的baskets来说不可能,一些其它DPP kernel的正则化可能更合适。另外,由于DPP kernel的对称性,可以建模有序(ordered corrections)。然而,这些被添加到shooping basket中的items的order会在basket completion任务中扮演重要角色。

主要贡献:

  • 在kernel上修改了constraints来支持大的baskets;也就是说,对于大于kernel rank的sets来说,我们会阻止返回概率0
  • 我们通过在DPP kernel的行列式上添加一个logistic function,来修改在所有baskets上的概率。我们将训练过程适配成处理这种非线性,并在许多real-world basket数据集上评估了我们的模型
  • 通过使用tensor factorization,我们提出了一种新方式来对在目录中的集合间的kernel进行正则化。该方法也会导致增强预测质量
  • 我们展示了这种新模型,称之为”tensorfized DPP”,允许我们可以捕获ordered basket completion。也就是说,我们可以利用该信息,忽略掉items被添加到basket的顺序,来提升预测质量

另外,我们展示了这些思想的组合来提升预测质量,tensorized DPP建模的效果要好于SOTA模型一大截。

2.相关工作

3.模型

DPPs最初用来建模具有排斥效应(replusive effect)的粒子间的分布。最近,在利用这种排斥行为上的兴趣,已经导致DPP在机器学习界受到大量关注。数学上,离散DPPs是在离散点集上的分布,在我们的case中,点就是items,模型会为观察到的给定items集合分配一个概率。假设I表示一个items集合,L是与DPP相关的kernel matrix(它的entries会在items间对polularity和similarity进行编码)。观察到的set I的概率与主子矩阵(principal submatrix)L的行列式成正比:\(I: P(I) \propto del L_I\)。因而,如果p表示在item catalog中的items数目,DPP是在\(2^p\)上的概率measure(),而它只包含了\(p^2\)的参数。kernel L会对items间的polularities和similarities进行编码,而对角条目\(L_{ii}\)表示item i的流行度,off-diagonal entry \(L_{ij} = L_{ji}\)表示item i和item j间的相似度。行列式从几何角度可以被看成是体积(volume),因此更diverse的sets趋向于具有更大的行列式。例如,选择items i和j的概率可以通过以下计算:

\[P[\lbrace i,j \rbrace] \propto \begin{vmatrix} L_{ii} & L_{ij} \\ L_{ji} & L_{jj} \\ \end{vmatrix} = L_{ii} L_{jj} - L_{ij}^2\]

…(1)

等式(1)中我们可以看到:如果i和j更相似,他们被抽样在一起的可能性越低。entries \(L_{ij}\)因此会决定kernel的排斥行为。例如,如果使用图片描述符来决定相似度,那么DPP会选择那些有区别的图片。另一方面,如果entries \(L_{ij}\)使用之前观察到的sets学到,比如:电商购物篮[10],那么,“similarity” \(L_{ij}\)会低些。由于共同购买的items可能具有某些diversity,DPPs对于建模包含购买items的baskets是一种天然选择。在搜索引擎场景、或者文档归纳应用中,kernel可以使用特征描述述 \(\phi_i \in R^D\)(例如:文本中的tf-idf)、以及一个关于每个item i的相关得分\(q_i \in R^+\),比如:\(L_{ij} = q_i \phi_i^T q_j\)(它会喜欢相关items (\(q_i\)值大),阻止相似items组成的lists)。

3.1 Logistic DPP

我们的目标是,寻找一个最可能一起购买的items集合。我们将该问题看成是一个分类问题,目标是预测:一个items的特定集合会生成一个转化(conversion),即:所有items都将被一起购买,这可以表示成\(Y \in \lbrace 0, 1 \rbrace\)。我们将class label Y建模成一个Bernoulli随机变量,它具有参数\(\phi(I)\),其中\(I\)是items集合,\(\phi\)是如下定义的函数:

\[p(y | I) = \phi(I)^y (1- \phi(I))^{1-y}\]

…(2)

我们使用一个DPP来建模函数\(\phi\)。

我们假设:存在一个隐空间,在该空间内diverse items很可能会被一起购买。与[10]相似,我们假设:在kernel matrix \(L \in R^{p \times p}\)上存在一个low-rank constraint,我们进行如下分解:

\[L = VV^T + D^2\]

…(3)

其中,\(V \in R^{p \times r}\)是一个隐矩阵,其中每个row vector i会编会item i的r个latent factors。D是一个对角阵(diagonal matrix),\(\|V_i \|\),表示每个item的intrinsic quality或popularity。在D上的平方指数确保了,我们总是具有一个合理的半正定kernel。我们接着定义:

\[\phi(I) \propto det(V_{I_{,:}} V_{I_{,:}}^T + D^2) \geq 0\]

注意,没有对角项,r的选择会限制observable set的cardinality,由于\(\mid I \mid > r\)暗示着当\(D \equiv 0\)时\(\phi(I)=0\)。使用该term会确保,任意set的后续概率都是正的,但对于基数(cardinality)高于r的sets,它的cross-effects会更低。我们也看到,具有相似latent vectors的items,对比起具有不同latent vectors的items,被抽到的可能性会更小,由于相似vectors会生成一个具有更小体积(volume)的超平行体(parallelotope)。为了对概率归一化,并鼓励vectors间的分离,我们会在\(\phi\)上使用一个logistic function:

\(\phi(I) = P(y = 1 | I) & \doteq 1 - exp(-w det L_I) \\ & \doteq \delta(w del L_I)\) …(5)

通常,logistic function的形式是:\(1/(1 + exp(-w det L_I))\)。然而,在我们的case中,行列式总是正的,因为L是半正定的,这会导致\(P(y=1 \mid I)\)总是大于0.5 。通过构建,我们的公式允许我们获得一个介于0和1之间的概率。最终,\(w \in R\)是一个scaling参数,可以通过cross-validation被选中,这确保了指数不会爆炸,因于对角参数会近似为1.

Learning。为了学习matrix V,我们确保了历史数据 \(\lbrace I_m, y_m \rbrace_{1 \leq m \leq M}\),其中,\(I_m\)是items集合,\(y_m\)是label set,如果该set购买则为1, 否则为0。该训练数据允许我们通过最大化数据的log似然来学习矩阵V和D。为了这样做,我们首先对所有y写出点击概率:

\[P(y | I) = \sigma(w det L_I)^y (1-\sigma(w det L_I))^{1-y}\]

…(6)

\(f(V,D)\)的log似然接着被写成:

\[f(V,D) = log \prod\limits_{m=1}^m P(y_m | I_m) - \frac{a_0}{2} \sum\limits_{i=1}^{p} a_i ( \| V_i \|^2 + \| D_i \|^2) \\ = \sum\limits_{m=1}^M log P(y_m | I_m) - \frac{a_0}{2} \sum\limits_{i=1}^{p} a_i ( \| V_i \|^2 + \| D_i \|^2)\]

根据[10],\(a_i\)是一个item正则权重,它与item流行度成反比。矩阵V和D可以使用SGA来最大化log似然进行学习。GA的一个step需要计算一个对称矩阵(\(L_i\),其中I是gradient step的相应item set)的行列式,它可以使用 optimized CW-like algorithm算法来达到,复杂度为:\(O(f^3)\)或\(O(f^{2.373})\),其中,f对应于在I中的items数目。用于学习所使用的最优化算法如算法1所示。

图片名称

算法1

3.3 Tensorized DPP

我们现在提出了对之前模型的一个修改版本,它更适合basket completion任务。为了这样做,对于basket completion场景,我们加强logistic DPP,其中我们对概率建模:用户将基于已经出现在shooping basket中的items来购买一个指定额外的item。我们使用一个tensor来表示它,目标是预测用户是否会基于basket来购买一个给定的candidate target item。该tensor的每个slice对应于一个candidate target item。在该setting中,对于在catalog p中的item (减去basket中已经存在的items),会存在越来越多的问题待解决。为每个待推荐的item学习一个kernel,每个item会与其它所有items相独立,在实际上是不可能的,会存在稀疏性问题。每个item只在baskets中的一小部分出现,因而每个kernel只会接受一小部分数据来学习。然而,所有items间并不完全相互独立。为了解决稀疏性问题,受RESCAL分解的启发,我们使用一个low-rank tensor。我们使用一个cubic tensor \(K \in R^{p \times p \times p }\),其中K的每个slice \(\tau\)(标为:\(K_{\tau}\))是candidate item (low-rank) kernel。通过假设:tensor K是low-rank的,我们可以实现在每个item间学到参数的共享,以如下等式所示:

\[K_{\tau} = V R_{\tau}^2 V^T + D^2\]

…(7)

其中,\(V \in R^{p \times r}\)是item latent factors,它对所有candidates items是共用的,\(R_{\tau} \in R^{r \times r}\)是一个candidate item指定的matrix,会建模每个candidate item间的latent components的交叉。为了对candidate items与已经在basket中的items间的自由度进行balance,我们进一步假设:\(R_{\tau}\)是一个对角矩阵。因此,\(R_{\tau}\)的对角向量会建模每个candidate item的latent factors,item的latent factors可以被看成是在每个latent factor上的产品的相关度。正如在matrix D的case,在\(R_{\tau}\)上的平方指数(squared exponent)可以确保我们总是有一个合理的kernel。

图片名称

图1

图1展示了factorization的一个图示。candidate item \(\tau\)的概率与已经在basket中的items set I是相关的:

\[P(y_{\tau} = 1 | I) = \sigma (w det K_{\tau, I} = 1 - exp(-w det K_{\tau,I})\]

…(8)

因此,\(g(V,D,R) \doteq g\)的log似然为:

\[g = \sum\limits_{m=1}^M log P(y_{\tau} | I_m) - \frac{a_0}{2} a_i (\| V_i \|^2 + \| D_i \|^2 + \| R^i \|^2)\]

其中,每个observation m与一个candidate item有关,\(I_m\)是与一个observation相关的basket items的set。由于之前的描述,矩阵V, D,以及\((R_{\tau})_{\tau \in \lbrace 1, \cdots, p\rbrace}\)通过使用SGA最大化log似然学到。正如logistic DPP模型,gradient ascent的一个step需要计算对称矩阵 \(L_I\)的逆和行列式,会产生\(O(f^{2.373})\)的复杂度(I中items数目为f)。算法2描述了该算法。关于最优化算法的细节详见附录。

图片名称

算法2

泛化到高阶交叉。在basket completion应用中,尝试同时推荐多个items挺有意思的。这可以使用一个贪婪方法来完成。也就是说,我们首先使用一个初始产品(initial product)来补充basket,并将augmented basket看成是一个新的basket,接着补充它。一种更直接的方法是,更适合捕获items间的高阶交叉,这可以泛化等式(7)。我们提出了一种高阶版本的模型,将来会对该模型进行效果评估。假设:d是要推荐的items数目,\(\tau = [\tau_1, \cdots, \tau_d] \in [p]^d\)。我们接着可以将kernel \(K_{\tau}\)定义为:

\[K_{\tau} = V \prod\limits_{k=1}^d R_{(d), \tau_d}^2 V^T + D^2\]

…(9)

其中,每个\(R_{(d), \tau_d} \in R^{r \times r}\)是一个对角矩阵。

3.3 预测

如前所述,从一个DPP中抽样可能是一个很难的问题,提出了许多解法[6,12]。尽管,在所有可能sets间抽样最好的set是个NP-hard问题,我们的目标是,寻找最好的item来补全basket。在这样的应用中,可以有效使用greedy方法,特别是我们的模型具有low-rank结构。另外,[10]提出了一种有效的方法来进行basket completion,涉及到对DPP进行conditioning,这在我们的logistic DPP模型有使用。

4.实验

5.实验结果

参考