meta在《Understanding Scaling Laws for Recommendation Models》讨论了推荐系统中的scaling law问题。

摘要

规模(scale)一直是提高机器学习性能的主要驱动力,理解规模法则(scaling laws)对于可持续的模型质量性能增长的战略规划、长期资源规划以及开发支持大规模模型的高效系统基础设施至关重要。在本文中,我们研究了DLRM风格的推荐模型的经验规模法则,特别是点击率(CTR)。我们观察到模型质量与模型大小、数据大小和训练所用计算量呈幂律加常数的规模。我们通过比较这些轴上的不同规模方案,对数据、参数和计算三个不同的资源维度的规模效率进行了表征。我们展示了参数规模对于所研究的模型架构已经力不从心,而在出现更高性能的模型架构之前,数据规模是前进的道路。本研究解决的关键研究问题包括:

  • 推荐模型是否如规模法则预测的那样可持续地规模?
  • 我们是否远离规模法则的预测?
  • 规模的极限是什么?
  • 规模法则对长期硬件/系统开发有何影响?

1. 引言

在过去十年中,深度学习总体上,特别是基于深度学习的推荐模型(DLRM),在数据集规模、模型规模和系统资源方面经历了指数级的增长(Elkahky等人,2015年;Covington等人,2016年;Sullivan,2016年;Liu等人,2017年;Yi等人,2018年;Zhou等人,2019年;Zhao等人,2019年;Naumov等人,2020年;Zhao等人,2020年;Lui等人,2021年;Acun等人,2021年;Steck等人,2021年;Lian等人,2021年),将人工智能行业推向了万亿参数时代。实现万亿参数模型需要在人工智能系统基础设施上进行大量投资(Mudigere等人,2022年)。从系统设计的角度来看,主要问题/关注点是:

  • 如何扩展?
  • 哪种扩展方案提供更好的投资回报率(ROI)?
  • 如何战略性地结合不同的扩展方案以提供更好的ROI?

图1显示了在5年时间(2016-2021)内,语言建模任务和DLRMs的模型规模增长了10000倍。这些结果只反映了已发布模型的增长。我们预计DLRMs的增长速度甚至更快。推荐系统是许多互联网公司的主要收入来源。因此,这些模型的细节通常是保密的。最近的研究表明,在仅仅2年多的时间里(2019-2021),Facebook的推荐模型在参数数量上增长了20倍,在训练集大小上增长了2.4倍,系统基础设施增长了2.5-2.9倍(Wu等人,2021年;Mudigere等人,2022年),并且超过50%的数据中心AI训练周期都致力于推荐模型(Acun等人,2021年)。尽管它们很重要,但对于DLRM模型如何扩展,人们的认识有限。识别和理解模型的扩展属性对于设计服务于这些模型的人工智能系统和基础设施至关重要。我们的论文是首次尝试解决这一差距。

图片名称

图1 深度学习总体上,特别是基于深度学习的推荐模型近年来在参数规模上经历了指数级的增长(Sevilla等人,2021年;Mudigere等人,2022年;Lian等人,2021年)。请注意不同领域增长趋势的差异。

最近的工作(Hestness等人,2017年;Kaplan等人,2020年;Hernandez等人,2021年;Henighan等人,2020年;Gordon等人,2021年;Zhai等人,2021年;Brown等人,2020年;Hestness等人,2019年;Prato等人,2021年;Bahri等人,2021年)显示,在包括语言建模、机器翻译、视觉变换器、迁移学习和其他自回归模型在内的广泛领域中,高度可预测的扩展趋势。然而,推荐系统如何扩展尚不清楚

此外,先前的研究在他们的扩展分析中没有包括embedding参数。embedding参数占推荐模型容量的大部分(>90%),因此,研究它们对模型质量性能扩展的影响至关重要。

我们在这项工作中的目标是表征深度学习推荐模型的扩展规律,特别是点击率(CTR)预测模型。CTR模型是推荐系统中最重要的机器学习任务之一,为数十亿用户提供个性化体验。通过研究许多不同模型规模N(跨越三个数量级)、计算预算C(跨越五个数量级)和数据集规模D(跨越三个数量级),我们展示了一个简单的幂律加常数可以解释CTR模型在一个周期内的性能与N、D和C之间的关系。

图11概述了一个典型的DLRM架构。在高层次上,有两个主要组件可以扩展:嵌入表和多层感知器(MLP)。

图片名称

图11 深度学习模型架构的示意图。

  • 嵌入表(embedding table)可以通过垂直扩展(增加每个表的嵌入行数)或水平扩展(扩展嵌入的维度)来扩展。
  • MLP层可以通过加宽或加深层来扩展。

我们研究了在四种扩展方法上的推荐系统的经验扩展规律:扩展嵌入表(垂直和水平)、扩展顶层MLP层(我们称之为总架构层)以及扩展所有MLP层(包括通过增加宽度来扩展密集层、总架构层和密集-稀疏交互层)。

1.1 摘要

我们对CTR预测模型的关键发现如下:

幂律加常数:我们观察到,在训练一个周期后,推荐模型的性能(测试损失)与资源投入遵循幂律加常数关系(αx−β + γ)(见图2)。资源包括数据集大小、模型大小和计算浮点运算量。幂律加常数函数中的常数γ标识了扩展的极限:即我们假设可以无限扩展资源时能达到的最佳水平。表1显示了不同扩展方案和不同资源投入情景下经验收集的α、β和γ值。

图片名称

图2 推荐系统的性能随着数据规模、模型规模以及训练计算量(FLOPs)的增加而呈现出幂律增长加上一个常数的特性:

  • (a) 通过增加多层感知机(MLP)层的宽度来扩展模型规模。
  • (b) 通过增加顶层网络层的宽度来扩展模型规模。
  • (c) 通过增加嵌入表的维度来扩展模型规模。
  • (d) 通过增加嵌入表中的行数来扩展模型规模。

幂律函数的两个阶段:如图3所示,幂律函数可以被一个高回报阶段和随后的低回报/饱和阶段所特征化。收益递减点是过渡发生的地方。如果使用幂律函数来比较两种扩展方案的效率,需要关注幂律函数的指数(β)以及操作阶段。指数较大且衰减更快的幂律函数更适合扩展。然而,处于饱和阶段的操作方案无论其指数如何,都不如非饱和方法。

图片名称

图3 幂律函数特征曲线

性能强烈依赖于数据集大小和计算能力,而与模型参数大小关系较弱:模型性能强烈依赖于训练集中的样本数量(D)和计算浮点运算量(C),而与参数数量(P)关系较弱。

扩展的极限:幂律趋势中的常数(γ)捕获了不可减少的错误。这意味着通过扩展资源(模型参数、数据大小和/或计算浮点运算)到无限大所能达到的最佳归一化测试损失将饱和在0.98。

数据扩展效率:所有扩展方案的数据扩展效率相似(β在[0.09, 0.12]范围内),并且对模型大小不敏感。所有扩展方案都处于高回报阶段。根据图4中显示的幂律指数,可以看出垂直扩展嵌入表(V)比水平扩展嵌入表(H)更好,而水平扩展嵌入表又比顶层MLP层扩展(O)更好,后者又比MLP层扩展(M)在数据扩展效率方面更好。这意味着在固定参数预算下,通过同时扩展数据集大小和模型大小来扩展模型性能,对参数扩展方法有些敏感。

图片名称

图4 不同模型扩展方案中的数据扩展效率。尽管每条线显示了在固定模型规模下的数据扩展趋势,每个图表中的虚线及其对应的方程捕捉了帕累托最优曲线。如图所示,不论扩展方案如何,当模型和数据一起扩展时,所有模型或多或少具有相同的幂律扩展特性(幂指数为-0.1),这意味着所有模型扩展方案中的数据扩展效率是相同的。

计算扩展效率:所有扩展方案的计算扩展效率相似(β在[0.12, 0.15]范围内)。所有扩展方案都处于高回报阶段。根据图5中显示的幂律指数,可以看出MLP扩展比顶层扩展更计算效率高,顶层扩展又略比嵌入维度扩展更计算效率高。

图片名称

图5 计算扩展效率 - 两种视角:(a) 同时扩展计算量(FLOPs)和数据集规模 (b) 同时扩展计算量(FLOPs)和模型规模。

参数扩展效率:不同扩展方案的参数扩展效率不同(α在[0.4, 7.6]范围内)。然而,所有扩展方案都处于饱和阶段(见图6)。对于一个工业级模型,所有参数扩展技术在参数扩展效率方面相似。这意味着在固定数据预算下,通过增加模型中的参数数量来扩展模型性能,对参数扩展方法不敏感。

图片名称

图6 不同参数扩展方案中的参数扩展效率。在所有扩展方案中可见的模式是,准确性与参数规模之间的弱依赖性。

2. 扩展效率

在给定固定预算/资源的情况下,主要问题是哪种扩展方案可以提供更好的投资回报率(ROI)。我们针对三种不同的资源,即数据、参数和计算浮点运算量,对扩展效率进行了表征。我们展示了所有扩展方案在数据扩展和计算扩展效率上都相似,并且仍有改进空间。另一方面,参数扩展效率非常低,因为它已经超出了收益递减点。

2.1 数据扩展效率

为了研究数据扩展效率,我们在广泛范围内(三个数量级)扩展数据集大小,同时保持模型大小不变。从概念上讲,线的斜率捕捉了模型在面对问题时吸收新信息的有效性。结果如图4所示。每个图表捕捉了不同的模型扩展方案(垂直嵌入、水平嵌入、顶层和MLP扩展)。

正如所有扩展策略所示,推荐系统的性能强烈依赖于数据集大小,而与参数/模型大小关系较弱。这是违反直觉且非常有趣的。我们继续看到在过去5年中嵌入表的大小和嵌入表的数量不断增长。这些结果意味着工业级模型在过拟合范围内运行。

虽然图4中的每条线显示了固定模型大小的数据扩展趋势,但每个图表中的虚线捕捉了帕累托前沿线。如图所示,无论扩展方案如何,所有模型都有类似的幂律趋势。这意味着所有模型扩展方案的数据扩展效率相似。

摘要 推荐系统的性能强烈依赖于数据大小,而与参数/模型大小关系较弱。与大规模语言模型(Hestness等人,2017年;Kaplan等人,2020年)相比,其中性能与模型大小强烈相关,推荐系统对模型大小的敏感性较弱,这在设计下一代推荐系统时需要考虑。所有扩展方案的数据扩展效率相似。这意味着所研究的模型以相同的速率从新数据中吸收信息,无论其背后的扩展方案如何。输入粒度/词汇量大小对扩展趋势没有显著影响。

2.2 计算扩展效率

我们的目标是表征捕捉模型质量性能与计算浮点运算量之间关系的线的斜率。从概念上讲,线的斜率捕捉了模型在面对问题时对新计算浮点运算量吸收新信息的速度。在计算效率分析中,我们保持数据(或模型大小)不变,同时扩展模型大小(或数据大小)。当我们扩展模型大小或数据大小时,我们间接地增加了计算浮点运算量。还有另一种方法可以在不改变数据大小或模型大小的情况下扩展计算浮点运算量,那就是训练更长时间的模型。我们留待未来的工作。

图5显示了这种扩展的结果。每个图表捕捉了不同的模型扩展方案(水平嵌入、顶层和MLP扩展。注意我们没有显示垂直扩展的计算扩展,因为增加行数对计算浮点运算量没有任何影响。)如图所示,所有扩展策略中,推荐系统的性能强烈依赖于计算浮点运算量的数量。我们以两种不同的方式呈现相同的结果:(1)通过模型扩展增加计算浮点运算量,同时保持数据大小不变(图5,顶行)。(2)或者,我们通过数据扩展增加计算浮点运算量,同时保持模型大小不变(图5,底行)。

图片名称

图7 何时选择垂直扩展(Vertical Scaling)与水平扩展(Horizontal Scaling)?

图片名称

图8 何时选择顶层网络扩展(Over-arch Scaling)与多层感知机扩展(MLP Scaling)?

图片名称

图9 嵌入维度对表大小的敏感性:每条线展示了不同的垂直扩展因子(VSF)。大的蓝色圆圈显示了每条线的最小损失。然而,曲线的拐点在64处始终如一地出现。

同时扩展计算和数据 图5顶行显示了通过扩展模型大小对性能的计算浮点运算量扩展影响。在每条线内,我们保持数据大小不变,同时通过模型大小扩展增加计算浮点运算量。注意不同扩展方案的幂律方程的幂之间的轻微差异。看来,MLP扩展略优于顶层扩展,顶层扩展又略优于嵌入维度扩展,在相同增加的计算预算下提高模型准确性(0.15对-0.14对-0.12)。此外,如图所示,在固定的计算预算下,更大的数据集大小会带来更好的性能。同时,在固定的准确性目标下,更小的数据集大小更具计算效率。

同时扩展计算和模型大小 图5底行显示了通过扩展数据大小对性能的计算浮点运算量扩展影响。在每条线内,我们保持模型大小不变,同时通过扩展数据集大小增加计算浮点运算量。如图所示,在固定的计算预算下,更大的模型获得更低的性能。同时,在固定的准确性目标下,更小的模型大小更具计算效率。虚线捕捉了在每个计算预算下获得最佳性能的最佳模型大小。图5(a)和(b)基本上是同一组点,从两个不同的视角呈现(一次基于数据集大小对点进行分组,一次基于模型大小进行分组),因此,帕累托最优线(虚线)将是相同的。

摘要 在固定的计算预算下,需要在在更大的数据集大小上训练模型或训练具有更多参数的模型之间做出权衡。我们观察到,在固定的计算预算下,具有更多参数的模型显示出更低/更差的性能,而用更大的数据集大小训练的模型显示出更好的性能。从计算效率的角度来看,我们观察到,在第一个周期,MLP扩展优于顶层扩展,顶层扩展优于水平扩展嵌入表。注意,垂直扩展嵌入表对计算浮点运算量没有任何影响。

3. 敏感性分析

3.1 如何有效地按行数扩展嵌入维度?

图9展示了随着我们在表中增加行数(增加垂直扩展因子)时最佳嵌入维度的变化情况。如图所示,随着垂直扩展因子的增大,最佳嵌入维度趋于变小(对于0.125×和0.25×的垂直扩展因子,256是最佳嵌入维度,而对于0.5×、1×和2×的垂直扩展因子则是128)。然而,最佳性能和最具资源效率的嵌入维度并不一定是相同的。如图所示,曲线的拐点(收益递减点)对于所有表大小在嵌入维度=64左右开始出现。这意味着从资源效率的角度来看,嵌入维度的资源高效设计点对垂直扩展因子的依赖性较弱。这一结果暗示,从资源效率的角度来看,超过64将不会提供高投资回报率。

3.2 训练与测试

如图10所示,训练数据的学习曲线比测试数据的学习曲线更陡峭(-0.20对比-0.12)。两条曲线都捕捉了在相同数据上训练的相同模型的扩展,但在两个不同的数据集上进行了评估。左侧的曲线在训练集的数据点上进行了评估,右侧的模型在测试集上进行了评估。这种差距意味着模型从额外的训练点吸收的信息在预测来自相同分布(训练分布而非测试分布)的数据时更有效,这是意料之中的。

图片名称

图10 training loss与testing loss上的数据扩展效率。请注意训练曲线和测试曲线之间幂律指数的差异。

4. 讨论

特征化不同扩展方案的幂律曲线提供了每种扩展技术的数据效率、参数效率和计算效率的见解。人们可以通过比较它们在三个不同轴(数据、计算、参数)上的幂律曲线,潜在地比较任何成对扩展技术的效率。表2显示了这种比较的结果。如图所示,没有单一的扩展技术在所有扩展效率维度上都脱颖而出。例如,水平嵌入扩展(H)在数据效率方面优于MLP扩展(M),但在计算效率方面则较差。

最近的分析显示,在短短5年多的时间里,工业级推荐模型增长了四个数量级(Mudigere等人,2022年;Lian等人,2021年)。幂律分析支持了过去的趋势。当按幂律趋势近似时,参数扩展的指数幅度最大。然而,工业级推荐模型已经过于庞大且饱和,因此进一步的参数增长不会从资源效率的角度提供高投资回报率。

与此同时,数据扩展和计算扩展仍然处于高收益递减的范围内。这意味着在更好的模型架构出现之前,应该将数据扩展视为一流的扩展方法。话虽如此,我们应该意识到,由于数据保留的限制,数据扩展从长远来看(以原始形式)并不是一种可持续的方法。

为了克服这一点,我们需要考虑替代方案。以下是一些建议,其中一些我们将作为下一步探索:(1) 记录更多数据,特别是通过记录更多负样本和减少正样本下采样;(2) 探索使用历史数据作为教师模型来训练模型,以合成从历史数据中学习到的有价值信息,供更近期的模型使用;(3) 水平扩展数据量而不是垂直扩展,即增加更多特征而不是增加更多行。

扩展法则也可以用来指导长期硬件开发。硬件设计通常提前3-5年开始,依靠对未来3-5年模型增长的准确预测。我们的分析表明,展望未来,硬件不需要增长来支持更大的模型。相反,我们需要设计硬件/系统来支持使用更大的数据集进行训练。

另一个关键的收获是,幂律加常数方程中的常数在0.98(以归一化熵度量的损失)处有界。这个常数捕获了在无限扩展极限下模型的准确性,可以用作衡量工业级模型与无限极限的距离的指南。在NLP领域的先前分析表明,模型架构的创新(例如,从LSTM过渡到Transformer)可以改善幂律的系数(即α.x−β + γ中的α),并向下移动曲线,但它们对幂律的指数(β)几乎没有影响(Hestness等人,2017年;Brown等人,2020年)。这表明模型架构探索是性能增长的短期解决方案。长期解决方案将需要改善幂律趋势的指数。至今,是什么控制了幂律的斜率仍然是一个开放的研究问题。幂律曲线的斜率似乎对每个领域都是独特的,与模型架构无关(Hestness等人,2017年;2019年)。先前的分析表明,改善数据分布可以改善幂律的指数(Bahri等人,2021年)。最近的工作表明,通过有效的数据修剪,我们可以打败幂律并实现指数级扩展(Sorscher等人,2022年)。

https://arxiv.org/pdf/2208.08489

kuaishou在《Conditional Quantile Estimation for Uncertain Watch Time in Short-Video Recommendation》提出了CQE预估模型。

摘要

准确预测观看时间(watch time)对于优化短视频平台的推荐和用户体验至关重要。然而,现有方法通常估计单一的平均观看时间(average watch time),往往无法捕捉用户参与模式固有的不确定性和多样性。在本文中,我们提出了条件分位数估计(Conditional Quantile Estimation, CQE)框架来模拟观看时间的全部条件分布。利用分位数回归,CQE为每对用户-视频对表征复杂的观看时间分布,提供了一种灵活全面的了解用户行为的方法。我们进一步设计了多种策略来结合分位数估计,以适应不同的推荐场景和用户偏好。大量的离线实验和在线A/B测试证明了CQE在观看时间预测和用户参与建模方面的优越性。特别是,CQE在一个服务数亿日活跃用户的短视频平台上的在线部署,已经产生了关键评估指标的显著改进,包括活跃天数、活跃用户数、参与持续时间和视频观看次数。这些结果突出了我们提出的方法在增强用户体验和短视频推荐系统整体性能方面的实际影响。代码将在发表后发布。

1 引言

在线视频平台的快速增长彻底改变了用户消费数字内容的方式,短视频已成为最受欢迎的格式之一[3, 9, 10, 23]。推荐系统在这些平台中扮演着至关重要的角色,通过提供个性化的内容推荐来增强用户参与度和满意度。与传统的推荐问题(例如,电子商务和新闻推荐)不同,在短视频推荐中,衡量用户兴趣和参与度的关键指标是观看时间,它全面反映了用户的偏好和参与度。因此,准确预测观看时间对于优化推荐策略和改善用户体验至关重要。

然而,由于用户行为固有的不确定性和异质性,预测观看时间仍然是一个具有挑战性的任务。在现实世界场景中,通常不可能在相同条件下获得同一用户-视频对的多次观看时间观察,因为用户很少在完全相同的情境下多次观看同一视频。这一限制使我们无法直接从数据中估计真实的条件观看时间分布。

现有方法[16, 20–22]通常专注于预测观看时间的单点估计(例如,均值或中位数),忽视了观看时间分布的复杂性和多样性。这些方法未能充分捕捉不同用户-视频对之间的行为差异,导致推荐性能受限。使用单一平均值来表征这些复杂分布模式的不足,突出了对观看时间的全部条件分布进行建模的必要性。

图片名称

图1 条件观看时间分布和一些个性化推荐策略的示意图。

  • 图(a) CQE模型为不同的用户-视频对预测的条件观看时间分布,展示了用户参与模式的异质性和复杂性。
  • 图(b) 保守估计策略在预期观看时间相似时优先选择具有较高下分位数的视频,以提高用户满意度。
  • 图(c) 动态分位数组合策略适应用户流失风险和视频新颖性,对高流失风险用户或不熟悉的视频使用较低分位数,对低流失风险用户或熟悉的视频使用较高分位数。
  • 图(d) 期望估计策略通过考虑整个观看时间分布,提供全局优化视角。

为了应对这些挑战,我们提出了条件分位数估计(Conditional Quantile Estimation, CQE)框架,该框架学习预测给定用户-视频对及其相关上下文,观看时间的条件分布。如图2所示,CQE利用分位数回归技术估计观看时间分布的多个分位数,提供了一个全面了解潜在用户参与模式的视角。如图1(a)所示,我们的CQE模型预测的不同用户-视频对的条件观看时间分布,在形状、峰值位置和离散水平上表现出显著的多样性。这种异质性反映了用户偏好和参与在不同情境下固有的不确定性和可变性。

图片名称

图2 提出的条件分位数估计(CQE)模型及其训练损失的示意图。

  • 图2左侧:CQE模型架构,它以用户、视频和上下文特征为输入,并输出观看时间的多个分位数估计。
  • 图2右侧:用于模型训练的PinBall loss函数,展示了其对于不同分位数水平($\tau$)的不对称性质,允许模型在整个分布中学习到稳健的分位数估计。

建模观看时间的条件分布对于理解用户参与模式、以及设计有效的推荐策略至关重要。通过考虑观看时间分布的详细特征,我们可以深入了解不同用户群体的多样化观看行为。这种细粒度的理解使我们能够为不同情境和用户偏好量身定制推荐策略。

基于CQE模型,我们设计了三种主要的推荐策略。

  • 保守估计策略(图1(b)):通过在预期观看时间(expected watch times)相似时选择具有较高下分位数(lower quantiles)的视频,优先考虑用户满意度,减少用户参与度下降的风险。
  • 动态分位数组合策略(图1(c)):根据用户流失风险和视频新颖性等因素调整分位数的选择。
    • 对于高流失风险用户或新颖视频,它更多地赋予低分位数权重,确保令人满意的体验,
    • 对于低流失风险用户或熟悉视频,则更多地赋予高分位数权重,可能提供更具吸引力的推荐。
  • 期望估计策略(图1(d)):提供了一个全局优化视角,旨在考虑整个观看时间分布,最大化整体用户参与度。这些策略的多样性使我们的推荐系统能够适应不同的场景和用户需求,提高个性化推荐和用户体验的质量。

本文的主要贡献如下:

  • 我们提出了CQE框架,采用分位数回归技术模拟短视频推荐中观看时间的条件分布,为捕捉用户行为的不确定性提供了一种有原则的方法。
  • 我们设计了多种策略来结合CQE的分位数估计,适应不同的推荐场景和用户偏好,增强了推荐系统的个性化和多样性。
  • 我们进行了广泛的离线实验和在线A/B测试,证明了CQE在观看时间预测和用户参与建模方面的优越性,显著提升了关键评估指标,包括活跃天数、活跃用户数、参与持续时间和视频观看次数。

2 相关工作

2.1 视频推荐和观看时间预测

视频推荐系统已经发展到满足个性化内容传递的日益增长的需求。随着YouTube和TikTok等在线视频平台的出现,准确推荐视频非常重要,因为它对用户留存和满意度有着重大影响[3, 9, 10, 16, 23]。 在视频推荐系统的领域中,准确预估在观看时间上的用户参与度是一个关键挑战。观看时间作为衡量用户对推荐视频兴趣和参与度的关键指标。

  • 最初的研究[2]集中在增强YouTube平台的视频推荐,引入了加权逻辑回归(WLR)技术来预测观看时间。这种方法自此被认为是该领域的先进方法。然而,WLR的适用性并不直接适用于全屏视频推荐系统,并且可能会遇到由于其加权计算系统而产生的显著偏差问题。
  • D2Q[20]通过实施后门调整和在不同持续时间组下建模观看时间分位数来减轻持续时间偏差。
  • $D^2Co$[21]通过使用纠正持续时间偏差和嘈杂观看的模型来解决视频推荐观看时间的偏差问题,提供更准确的用户兴趣度量。
  • DVR[22]引入了一种称为WTG(观看时间增益)的新指标,并使用对抗学习来学习无偏的用户偏好。我们的方法可以无缝集成到各种持续时间去偏差方法中,从而显著提高它们的预测准确性。
  • TPM[8]将任务分解成一系列以树状结构排列的相互连接的分类问题。尽管TPM考虑了观看时间的变异性,但它没有像我们的方法那样捕捉到观看时间分布的全部范围。

观看时间预测任务还面临物理时长偏差(duration bias)的关键问题[8, 20–22]。这种偏差表明,用户更愿意花更多时间观看更长物理时间的视频(longer-duration videos),这使得平均观看时间偏向更长的内容。这种偏好使得在预测用户参与度时,比起更短的替代品,更复杂的任务变得更加复杂。我们的方法可以无缝集成到大多数持续时间去偏差方法中,显著提高它们的预测能力,如表3所示。

表3

2.2 分位数回归(Quantile Regression)

分位数回归是一种在统计学、计量经济学和生态学中广泛使用的回归分析类型[7]。与传统的均值/线性回归(专注于估计平均结果)不同,分位数回归(Quantile Regression)旨在估计随机变量的条件中位数和其他分位数。这一灵活的特性提供了对变量分布效应的更全面理解,这些效应可能是均值回归可能忽视的[1, 18, 19]。在机器学习的背景下,分位数回归已经超越了线性模型。

  • 代表性方法[13, 14, 17]将分位数回归整合到神经网络中,提供了在非线性和高维环境中预测条件分位数的手段。
  • QRF[11]进一步在随机森林中部署分位数回归,进一步展示了其适应性和在不同模型中增强预测能力。

本文提出的解决方案旨在将分位数回归的原则整合到视频推荐系统的领域。通过使这种统计方法适应观看时间的不确定性和可变性,我们提出了一种新颖的应用,增强了推荐系统的预测性能。这一进步促进了对用户参与度的更细致的理解,朝着更个性化和令人满意的用户体验发展。

3 方法

3.1 问题阐述

在视频推荐系统中,我们的主要目标是预测用户参与度,通常以观看时间来衡量。设:

  • $(u, v)$ 表示在上下文c下的一对用户-视频。
  • $ \phi(u, v, c) $,定义一个特征映射函数,它提取一个 $ n $ 维特征向量 $ x \in \mathbb{R}^n $。这个向量包含了用户特征、视频属性、上下文信息和历史交互数据。
  • $ W $ 为表示观看时间的随机变量

我们的目标是:估计给定输入特征下,$W$的概率分布:

\[P(W | x) = P(W | \phi(u, v, c))\]

…(1)

与传统方法[2, 16, 20–22]不同,这些方法专注于估计单一的点(例如,期望观看时间 $ E[W \mid x] $),我们的目标是表征整个条件分布。这使我们能够捕捉用户参与模式固有的不确定性和可变性,提供对潜在用户行为更全面的理解。

3.2 条件分位数估计模型

为了捕捉观看时间的全部分布,我们提出了条件分位数估计(Conditional Quantile Estimation, CQE)模型。如图2的左半部分所示,这种方法允许我们同时估计观看时间分布的多个分位数,提供对潜在用户参与的更全面视图。

设:

  • $ {\tau_1, \tau_2, …, \tau_N} $ 是一组预先定义的 $ N $ 个分位数水平,其中 $ \tau_i = \frac{i}{N+1} $。

我们的CQE模型旨在估计给定输入特征 $ x $ 的每个分位数水平对应的观看时间值 $ {t_{\tau_1}, t_{\tau_2}, …, t_{\tau_N}} $:

\[\{t_{\tau_1}, t_{\tau_2}, ..., t_{\tau_N}\} = \psi(x; \theta)\]

…(2)

其中:

  • $ \psi(\cdot) $ 是一个由 $ \theta $ 参数化的神经网络。

为确保分位数估计的单调性,我们实现了以下架构:

\[h = f(x; \theta_f) \\ d = \text{ReLU}(g(h; \theta_g)) \\ t_{\tau_i} = \sum_{j=1}^{i} d_j, \quad \text{对于} \ i = 1, ..., N\]

…(3)

这里:

  • $ f(\cdot) $ 和 $ g(\cdot) $ 是神经网络组件,
  • $ h $ 是中间隐藏表示,
  • $ d $ 是一个非负元素向量。

最终的分位数估计 $ t_{\tau_i} $ 通过累积求和获得,自然地强制执行排序约束:

\[t_{\tau_1} \leq t_{\tau_2} \leq ... \leq t_{\tau_N}\]

这种公式允许我们的模型捕捉输入特征和观看时间分位数之间的复杂非线性关系,同时保持分位数函数的单调性属性。

为了清晰概述我们的CQE方法,我们在算法1中展示了算法伪代码。

图片名称

算法1

CQE模型的计算复杂度与传统的点估计方法相当,仅因估计多个分位数而略有增加。在大规模推荐系统中,去重用户(unique user)和item的数量经常达到数亿甚至数十亿。这些用户和item通常由高维嵌入表示,这些嵌入使用它们各自的ID检索。相比之下,有效估计所需的分位数数量通常在100左右。因此,CQE的额外计算成本与处理大量特征所需的大量计算相比可以忽略不计。

3.3 训练目标

为了有效地训练我们的CQE模型,我们采用了适合分位数回归任务的PinPall loss函数。对于单一分位数水平 $ \tau $,PinPall loss定义为:

\[L_\tau(y, t_\tau) = \begin{cases} \tau (y - t_\tau) & \text{if } y \geq t_\tau \\ (1 - \tau) (t_\tau - y) & \text{otherwise} \end{cases}\]

…(4)

其中:

  • $ y $ 是实际观看时间
  • $ t_\tau $ 是预测的第 $ \tau $ 个分位数。

正如图2的右半部分所示,PinBall loss函数具有几个关键属性:

  • 不对称性:loss围绕真实值$y$是不对称的,不对称的程度由 $ \tau $ 决定。
  • 线性:loss随着预测值和实际值之间的距离线性增加,但在 $ y $ 的两侧斜率不同。
  • 分位数特定的惩罚:对于 $ \tau > 0.5 $,过高估计比过低估计受到更重的惩罚,反之亦然 $ \tau < 0.5 $。

这些属性使得PinBall loss特别适合分位数估计。对于我们的多分位数模型,我们聚合了所有分位数水平上的PinBall loss:

\[L_{QR} = \sum_{i=1}^{N} L_{\tau_i}(y, t_{\tau_i})\]

…(5)

这个聚合的损失函数鼓励模型在整个分布中学习准确的分位数估计,捕捉每对用户-视频的潜在观看时间的全谱(full spectrum)。

3.4 推理策略(Inference)

一旦我们训练了CQE模型来估计观看时间分布的多个分位数,我们就可以采用不同的推理策略。我们提出了三种主要方法:保守估计、动态分位数组合和条件期望。每种策略都提供了不同的优势,并适用于特定的推荐场景。

3.4.1 保守估计(Conservative Estimation)

在用户满意度至关重要且高估成本较高的环境中,我们采用保守估计(CSE)策略。这种方法侧重于观看时间分布的下分位数,以确保令人满意的用户体验。

如图1(b)所示,当预期观看时间相似时,我们通过选择具有较高下分位数的视频来优先考虑用户满意度。这种策略有助于降低用户因过于乐观的推荐而失望的风险。

正式地,我们选择一个较低的分位数 $ \tau_{\text{low}} $(例如 $ \tau_{\text{low}} = 0.25 $),并使用其对应的观看时间预测:

\[\widehat{y}_{\text{CSE}} = t_{\tau_{\text{low}}}\]

这种策略有助于降低用户因过于乐观的推荐而失望的风险,因为实际观看时间很可能超过这个保守估计。

3.4.2 动态分位数组合(Dynamic Quantile Combination)

为了适应不断变化的用户偏好和内容特征,我们提出了一种动态分位数组合(DQC)策略。这种方法根据上下文因素结合不同分位数的预测。

如图1(c)所示,DQC策略根据用户的流失风险和视频新颖性调整分位数的选择。

  • 对于高流失风险用户或新颖视频,它更多地赋予低分位数权重,确保令人满意的体验,
  • 对于低流失风险用户或熟悉的视频,则更多地赋予高分位数权重,可能提供更具吸引力的推荐。

这种动态方法允许系统根据用户当前状态和内容熟悉度,在安全推荐和可能更具回报的推荐之间进行平衡。

设 $ k \in [0, 1] $ 为上下文依赖的混合参数。我们计算最终预测为:

\[\widehat{y}_{\text{DQC}} = k \cdot t_{\tau_{\text{low}}} + (1 - k) \cdot t_{\tau_{\text{high}}}\]

…(7)

其中:

  • $ t_{\tau_{\text{low}}} $ 和 $ t_{\tau_{\text{high}}} $ 分别代表保守和乐观的分位数预测。

混合参数$k$可以根据用户风险档案、视频新颖性或平台目标等因素进行调整。例如,对于新用户或新颖内容,我们可能使用较高的 $ k $(倾向于保守估计),对于老用户或熟悉的内容类型,则使用较低的 $ k $。

3.4.3 条件期望

在我们旨在优化预期观看时间的场景中,我们采用条件期望策略。这种方法通过在预测的分位数之间进行插值来估计平均观看时间。

如图1(d)所示,条件期望估计(CDE)策略提供了一个全局优化视角,旨在通过考虑整个观看时间分布来最大化整体用户参与度

如图2左半部分所示,这些输出的观看时间值示例化了观看时间的分布。为了通过条件期望恢复平均估计,我们面临没有两个连续分位数之间 $ \tau \in (\tau_i, \tau_{i+1}) $ 的输出值的挑战。为了解决这一信息缺失问题,我们使用插值方法来近似条件分布。

我们采用连续分位数之间的线性插值,因此 $ \tau_i $ 和 $ \tau_{i+1} $ 之间的预期观看时间变为 $ (t_{\tau_i} + t_{\tau_{i+1}}) / 2(N + 1) $。对于两个端点,我们假设 $ t_0 = t_{\tau_1} $ 和 $ t_1 = t_{\tau_N} $。然后,我们可以近似整体观看时间的期望为:

\[\widehat{y}_{\text{CDE}} = \frac{1}{2(N + 1)} \left[(t_{\tau_1} + t_{\tau_1}) + (t_{\tau_1} + t_{\tau_2}) + (t_{\tau_2} + t_{\tau_3}) + \ldots + (t_{\tau_{N-2}} + t_{\tau_{N-1}}) + (t_{\tau_{N-1}} + t_{\tau_N}) + (t_{\tau_N} + t_{\tau_N})\right] \\ = \frac{1}{N + 1} \left(\sum_{i=1}^{N} t_{\tau_i} + \frac{t_{\tau_1} + t_{\tau_N}}{2}\right)\]

…(8)

从理论上讲,这种期望通常提供最准确的预测,并且在 $ N \to \infty $ 时将实现最优预测。实证上,我们将在第4.2节的实验分析中验证其优越性。然而,我们提醒读者,这种策略可能不适用于用户对不良推荐不宽容的场景,或者推荐系统需要动态控制的场景

每种推理策略都提供了独特的好处,允许推荐系统适应不同的目标和用户环境。通过利用我们的CQE模型提供的丰富信息,我们可以做出更明智和灵活的推荐决策。

4 实验和结果

在这一部分,我们通过在线A/B测试和离线实验,全面评估了我们提出的条件分位数估计(Conditional Quantile Estimation, CQE)框架。我们的实验设计旨在解决几个相互关联的研究问题:

  • RQ1: 不同的CQE策略在现实世界场景中的表现如何?
  • RQ2: CQE与最先进的方法在观看时间预测和用户兴趣建模方面的比较如何?
  • RQ3: 分位数数量对CQE性能的影响是什么?

通过探讨这些问题,我们希望提供CQE能力的全面视图,它的实际影响,以及它在不同推荐情境中的泛化潜力。

4.1 在线实验(RQ1)

为了验证我们条件分位数估计(CQE)框架在现实世界中的影响,我们在拥有数亿用户的短视频平台上进行了广泛的在线A/B测试。这些实验使我们能够在拥有庞大用户基础的实时环境中,评估所有三种CQE策略的实际有效性。

4.1.1 实验设置

用户被随机分配到对照组和实验组,确保实验组至少分配到每日用户流量的10%,以确保统计显著性。每次在线A/B测试运行时间超过一周,为数据收集和可靠结果分析提供了充足的时间。

推荐系统采用两阶段流程:候选检索后跟排序。我们将CQE模型整合到排序阶段,以预测观看时间,这是推荐过程中的关键组成部分。

我们使用四个关键指标评估推荐系统的性能:

  • 每用户平均观看时间:这个核心指标通过量化用户观看推荐视频的平均时间,直接衡量用户参与度。
  • 总播放次数:这个指标统计所有用户的累计视频播放次数,反映用户与推荐内容的交互频率。
  • 每用户活跃天数:这个指标衡量用户与平台交互的天数,表明用户留存情况。
  • 每日活跃用户数:这个指标表示与平台交互的独特用户数量,反映系统维持和增长其用户群的能力。

4.2 离线实验(RQ2 和 RQ3)

虽然我们的在线A/B测试展示了CQE在现实世界场景中的实际影响,但离线实验允许我们对我们的方法进行更受控和详细的分析。我们的离线实验专注于两个密切相关的任务:观看时间预测和用户兴趣预测。这两项任务共同为评估CQE框架在推荐系统中的有效性提供了全面视角。

观看时间预测直接捕获用户与内容的互动持续时间,这是用户参与度的关键指标。然而,仅预测观看时间可能无法完全捕捉用户兴趣。因此,我们引入了用户兴趣预测任务,它结合观看时间和视频时长,提供对用户兴趣更微妙的度量。这两项任务相辅相成:观看时间预测提供直接的行为预测,而用户兴趣预测帮助我们理解这些行为背后的动机。

4.2.1 观看时间预测

在这个任务中,我们的主要目标是准确预测用户观看时间的持续时间

数据集

遵循TPM[8],我们使用了两个公共数据集:

  • Kuaishou(收集自快手App1)和CIKM16(来自CIKM16杯2)进行我们的实验。虽然CIKM16主要是一个电子商务搜索查询数据集,但我们包括它是为了展示我们的CQE方法在不同推荐情境下的潜在泛化能力。电子商务页面停留时间的预测在模拟用户参与持续时间方面与视频观看时间预测有相似之处,尽管我们承认内容类型和用户行为模式存在差异。在CIKM16数据集中,会话中的每个项目被用作输入的单一特征。

  • Kuaishou数据集包含7,176个用户、10,728个项目和12,530,806次展示;CIKM16数据集包含310,302个会话和122,991个项目,每个会话的平均长度为3.981。

指标。我们使用两个指标来评估模型的性能:平均绝对误差(MAE)和XAUC[20]。

  • MAE:这是评估回归准确性的典型测量方法。表示预测值为 $ \widehat{y} $,真实观看时间为 $ y $,MAE 定义为:
\[\text{MAE} = \frac{1}{N} \sum_{i=1}^{N} \| \widehat{y}_i - y \|\]

…(9)

  • XAUC:评估两个样本的预测是否与它们的真实观看时间顺序相同。它与推荐系统的排序性质很好地对齐。在实践中,预测的相对顺序通常比它们的绝对值更重要,这使得XAUC与我们的研究目标特别相关。它帮助我们评估CQE能否有效捕捉不同内容项目中用户参与度的微妙差异。

基线

为了比较,我们选择了四种最先进的观看时间预测方法,包括WLR(加权逻辑回归)[2]、D2Q(持续时间去混杂分位数)[20]、OR(序数回归)[12]和TPM(基于树的渐进回归模型)[8]。前三种方法是确定性的,而后者引入了不确定性因素,提供了均值和方差的估计。

4.2.2 用户兴趣预测

这个任务结合观看时间和视频时长,提供了一个更全面的用户兴趣指标。通过这样做,我们不仅考虑用户观看视频的时间长度,还考虑这个时间与视频总长度的关系,从而更准确地反映用户真正的兴趣水平。遵循D2Co[21],具体来说,我们定义给定用户-视频对 $(u, v)$ 的用户兴趣为:

\[x = \begin{cases} 1, & \text{if } (d \leq 18s \text{ and } w = d) \text{ or } (d > 18s \text{ and } w > 18s); \\ 0, & \text{otherwise}; \end{cases}\]

…(10)

其中:

  • $ d $ 是视频时长,
  • $ w $ 是观看时间。

我们采用了与D2Co相同的训练配置,并使用了经典的深度推荐模型DeepFM [5]和最先进的推荐模型AutoInt [15]作为我们的底层推荐模型。

数据集。遵循D2Co,我们利用了两个公开可用的真实世界数据集:WeChat3和KuaiRand4。这些数据集来源于著名的短视频平台,即微信看一看和快手。微信数据集包含20,000个用户、96,418个项目、7,310,108次互动。该数据集通过2021年微信大数据挑战赛提供,涵盖了为期两周的微信看一看日志。KuaiRand数据集是新发布的一款来自快手的顺序推荐数据集。如[4]所建议,我们在本研究中使用了其中一个子集KuaiRand-pure。它包含26,988个用户、6,598个项目和1,266,560次互动。

指标。GAUC(Group Area Under Curve)[24]和nDCG@k(排名前k的归一化折扣累积增益)[6]被用作推荐性能的评估指标。

  • GAUC:这个指标是通过在不同用户组之间加权平均ROC曲线下面积(AUC)来计算的,反映了模型对项目进行准确排名的能力。
  • nDCG@k:这个指标基于item的相关性和它们在前k名的位置来衡量推荐列表的增益,提供了对推荐列表顶部item及其排序质量的洞察。

基线。我们使用了D2Co中定义的加权二元交叉熵损失和均方误差损失(MSE)作为我们的基线。二元交叉熵损失定义为

\[L_{CE} = -r \log[\sigma(f(x))] - (1 - r) \log[1 - \sigma(f(x))]\]

其中:

  • $ \sigma $ 是Sigmoid函数,
  • $ r $ 是用户兴趣,由PCR、WTG [22]或D2Co [21]定义。

遵循D2Co,在PCR和WTG中,我们将观看时间少于5秒的所有样本在计算标签值后视为0值。这有助于去除观看时间的噪声。

**默认情况下,我们将:

  • 分位数的数量 $ N $ 设置为100。
  • $ \tau_{\text{low}} $ 的值从0.2、0.25和0.3中经验性选择。
  • 同样,$ \tau_{\text{high}} $ 的值从0.6、0.7和0.8中经验性选择。

4.2.3 实验结果。

我们总结结果如下:

CQE、CDE与其他方法的比较:我们比较了不同方法在观看时间预测任务中的表现,结果列在表4中。TPM和CQECDE在MAE和XAUC指标上都优于其他方法,从而突显了将不确定性纳入模型的重要性。此外,我们的方法在两个指标上与TPM相比表现出更优越的性能,从而强调了采用分位数建模技术的优越性。此外,MAE和XAUC指标之间的一致行为也验证了观看时间估计作为排名指标的可行性。至于用户兴趣预测任务,我们在不同的框架(DeepFM和AutoInt)和各种标签设计(PCR、WTG和D2Co)之间进行比较,结果列在表3中,我们提出的CQECDE在所有情况下一贯优于替代方案,表明CQECDE的鲁棒性和有效性。在优化框架方面,CE通常比MSE表现更好,表明将序数分类信息作为指导的正确性。而且CQECDE可以在所有用户兴趣度量设计(PCR、WTG和D2Co)上改善CE,这意味着所提出的框架可以推广到不同的标签设置。

CQE、CDE中超参数的影响:为了更好地研究提出的CQE框架的特性,我们进一步对分位数数量 $ N $ 进行消融研究,将其值从1变化到500。从理论上讲,更大的 $ N $ 生成更精确的真实期望近似,从而通常实现更好的推荐性能。这归因于更多分位数产生的分布更接近实际分布。在观看时间预测任务的背景下,如图4所示,模型性能随着预测分位数的增加而提高。相反,对于用户兴趣预测任务,观察到(如图5所示)当分位数数量少于10时模型性能相对较弱。超过10之后,结果在0.663左右波动。有趣的是,与观看时间预测任务不同,更多的分位数并不一定带来更好的结果。这种差异表明训练目标与测试集中定义的用户兴趣标签之间存在差距。总的来说,在条件期望策略下增加 $ N $ 可能会提高预测准确性。

总结来说,我们的离线实验通过这两项互补的任务全面展示了CQE方法在预测用户行为和兴趣方面的优越性。观看时间预测任务验证了CQE在直接行为预测方面的准确性,而用户兴趣预测任务进一步证明了CQE有效捕捉更复杂用户偏好的能力。这些任务的结合不仅验证了我们方法的有效性,还突出了CQE框架在解决推荐系统中不同但相关挑战的灵活性和适应性。

#

https://arxiv.org/pdf/2407.12223

huawei团队在《FinalMLP: An Enhanced Two-Stream MLP Model for CTR Prediction》提出了一种FinalMLP方法。

摘要

点击率(CTR)预测是在线广告和推荐系统中的一项基本任务。多层感知器(MLP)作为许多深度CTR预测模型的核心组件,已被广泛认识到,单独使用一个vanilla MLP网络在学习乘法特征交叉方面是低效的。因此,许多双流交叉模型(例如DeepFM和DCN)通过将MLP网络与另一个专用网络集成,以增强CTR预测能力。由于MLP流(MLP stream)隐式地学习特征交叉,现有研究主要集中在增强补充流(complementary stream)中的显式特征交叉。相比之下,我们的实证研究表明,一个经过良好调整的双流MLP模型,简单地结合两个MLP,甚至可以实现令人惊讶的良好性能,这在现有工作中从未被报道过。基于这一观察,我们进一步提出了特征门控(feature gating)和交叉聚合层(interaction aggregation layers),这些层可以轻松地插入以构建增强的双流MLP模型,即FinalMLP。这样,它不仅支持差异化的特征输入,而且有效地融合了两个流之间的流级交互(stream-level interactions)。我们在四个开放基准数据集上的评估结果以及我们工业系统中的在线A/B测试表明,FinalMLP比许多复杂的双流CTR模型具有更好的性能。我们的源代码将在 https://reczoo.github.io/FinalMLP 上提供。

1.引言

点击率(CTR)预测是在线广告和推荐系统(Cheng et al. 2016; He et al. 2014)中的一项基本任务。CTR预测的准确性不仅直接影响用户参与度,而且显著影响商业提供商的收入。CTR预测的一个关键挑战在于学习特征之间的复杂关系,以便模型在罕见特征交叉的情况下仍然能够很好地泛化。多层感知器(MLP),作为深度学习中强大且多功能的组件,已经成为各种CTR预测模型(Zhu et al. 2021)的核心构建块。尽管理论上MLP被认为是通用逼近器,但实践中广泛认识到应用vanilla MLP网络学习乘法特征交叉(例如点积)是低效的(Wang et al. 2017, 2021; Rendle et al. 2020)

为了增强学习显式特征交叉(二阶或三阶特征)的能力,提出了多种特征交叉网络。典型的例子包括因子分解机(FM)(Rendle 2010)、交叉网络(Wang et al. 2017)、压缩交互网络(CIN)(Lian et al. 2018)、基于自注意力的交互(Song et al. 2019)、自适应因子分解网络(AFN)(Cheng, Shen, and Huang 2020)等。这些网络引入了学习特征交叉的归纳偏差,但根据我们在表3中的实验,它们失去了MLP的表达能力。因此,双流CTR预测模型已被广泛采用,如DeepFM(Guo et al. 2017)、DCN(Wang et al. 2017)、xDeepFM(Lian et al. 2018)和AutoInt+(Song et al. 2019),它们将MLP网络和专用特征交叉网络集成在一起,以增强CTR预测。具体来说,MLP流隐式地学习特征交叉,而另一流则以补充方式增强显式特征交叉。由于它们的有效性,双流模型已成为工业部署(Zhang et al. 2021)的流行选择。

尽管许多现有研究已经验证了双流模型相对于单个MLP模型的有效性,但没有一项研究报告了与简单并行组合两个MLP网络的双流MLP模型(称为DualMLP)的性能比较。因此,我们的工作首次努力描述DualMLP的性能。我们在开放基准数据集上的实证研究表明,尽管DualMLP简单,但可以实现令人惊讶的良好性能,这与许多精心设计的双流模型相当甚至更好(见我们的实验)。这一观察激发了我们研究这样一个双流MLP模型的潜力,并进一步将其扩展为CTR预测的简单而强大的模型。

事实上,双流模型可以被视为两个并行网络的集成。这些双流模型的一个优势是每个流可以从不同的角度学习特征交叉,从而互补以实现更好的性能。例如:

  • Wide&Deep(Cheng et al. 2016)和DeepFM(Guo et al. 2017)提出使用一个流来捕获低阶特征交叉,另一个流来学习高阶特征交叉。
  • DCN(Wang et al. 2017)和AutoInt+(Song et al. 2019)主张在两个流中分别学习显式特征交叉和隐式特征交叉。
  • xDeepFM(Lian et al. 2018)进一步从向量级和位级角度增强特征交叉学习。这些先前的结果验证了两个网络流的差异化(或多样性)对双流模型的有效性有重大影响。

与现有的依靠设计不同网络结构(例如,CrossNet(Wang et al. 2017)和CIN(Lian et al. 2018))以实现流差异化的双流模型相比,DualMLP的局限性在于两个流都是简单的MLP网络。我们的初步实验还表明,通过为两个MLP调整不同的网络大小(即,层数或单元数),DualMLP可以实现更好的性能。这一结果促使我们进一步探索如何扩大两个流的差异化,以改善作为基础模型的DualMLP。此外,现有的双流模型通常通过求和或连接的方式结合两个流,这可能浪费了对高级(即,流级)特征交叉进行建模的机会。如何更好地融合流输出成为另一个值得进一步探索的研究问题。

为了解决这些问题,在本文中,我们构建了一个增强的双流MLP模型,即FinalMLP,它在两个MLP模块网络上集成了特征门控和交叉聚合层。更具体地说,我们提出了一个流特定的特征门控层(stream-specific feature gating layer),允许获得基于门控的特征重要性权重进行软特征选择(soft feature selection)。也就是说,特征门控可以通过基于可学习参数、用户特征或item特征的条件来从不同视角计算,分别产生全局、user-specific或item-specific的特征重要性权重。通过灵活选择不同的门控条件特征,我们能够为每个流派生出流特定的特征,从而增强两个流的互补特征交叉学习的差异化特征输入。为了融合流输出与流级特征交叉,我们提出了一个基于二阶双线性融合(Lin, RoyChowdhury, 和 Maji 2015; Li et al. 2017)的交叉聚合层。为了降低计算复杂性,我们进一步将计算分解为k个子组,从而实现高效的多头双线性融合。特征门控和交叉聚合层都可以轻松地插入到现有的双流模型中。

我们的实验结果在四个开放基准数据集上显示,FinalMLP优于现有的双流模型,并达到了新的最先进性能。此外,我们通过离线评估和在线A/B测试在工业环境中验证了其有效性,其中FinalMLP也显示出比部署的基线显著的性能提升。我们设想,简单而有效的FinalMLP模型可以作为未来双流CTR模型发展的新强基线。本文的主要贡献总结如下:

  • 据我们所知,这是第一个实证研究双流MLP模型惊人有效性的工作,这可能与文献中的普遍观点相反。
  • 我们提出了FinalMLP,这是一个具有可插拔特征门控和交叉聚合层的增强型双流MLP模型。
  • 我们在基准数据集上进行了离线实验,并在生产系统中进行了在线A/B测试,以验证FinalMLP的有效性。

2.背景和相关工作

在这一部分,我们简要回顾了CTR预测的框架和代表性的双流模型。

2.1 双流CTR模型的框架

我们在图1(b)中展示了双流CTR模型的框架,它包括以下关键组件。

图片名称

图1 (a) 流特定特征选择的示意图。 (b) 双流CTR模型的通用框架。 (c) 多头双线性融合。

2.1.1 特征嵌入

嵌入是将高维和稀疏的原始特征映射到密集数值表示的常用方法。具体来说,假设原始输入特征是$x = {x_1, \cdots, x_M}$,有M个特征字段,其中:$x_i$是第i个字段的特征。一般来说,$x_i$可以是分类的、多值的或数值特征。每个都可以相应地转换为嵌入向量。感兴趣的读者可以参考(Zhu et al. 2021)以获取有关特征嵌入方法的更多细节。然后,这些特征嵌入将被连接并输入到下一层。

2.1.2 特征选择

特征选择是双流CTR模型框架中的一个可选层。在实践中,特征选择通常通过离线统计分析或通过差异比较的模型训练来执行(Pechuan, Ponce, 和 de Lourdes Mart ´ ´ınez-Villasenor ˜ 2016)。与硬特征选择不同,这项工作中,我们专注于通过特征门控机制进行软特征选择(Huang, Zhang, 和 Zhang 2019; Guan et al. 2021),其目的是获得特征重要性权重,以帮助放大重要特征,同时抑制噪声特征。在这项工作中,我们研究了流特定的特征门控,以实现差异化的流输入。

2.1.3 双流特征交叉

双流CTR模型的关键特点是:采用两个并行网络从不同视角学习特征交叉。基本上,每个流可以采用任何类型的特征交叉网络(例如,FM(Rendle 2010)、CrossNet(Wang et al. 2017)和MLP)。现有工作通常将两种不同的网络结构应用于两个流,以学习互补的特征交叉(例如,显式与隐式,位级与向量级)。在这项工作中,我们首次尝试使用两个MLP网络作为两个流。

2.1.4 流级融合

流级融合是必要的,以融合两个流的输出以获得最终预测的点击概率$\widehat{y}$。假设$o_1$和$o_2$作为两个输出表示,可以表示为:

\[\widehat{y} = σ(w^T F(o_1, o_2))\]

其中:

  • F:表示融合操作,通常设置为求和或连接(concatenation)。
  • w:表示在必要时将输出维度映射到1的线性函数。
  • σ:是sigmoid函数。

现有工作只对流输出进行一阶线性组合,因此无法挖掘流级特征交叉。在这项工作中,我们探索了二阶双线性函数用于流级交叉聚合。

2.1.5 代表性的双流CTR模型

我们总结了一些代表性的双流模型,这些模型涵盖了CTR预测研究的广泛领域:

  • Wide&Deep:Wide&Deep(Cheng et al. 2016)是一个经典的双流特征交叉学习框架,结合了广义线性模型(宽流)和MLP网络(深流)。
  • DeepFM:DeepFM(Guo et al. 2017)通过将wide流替换为FM来扩展Wide&Deep,以显式学习二阶特征交叉。
  • DCN:在DCN(Wang et al. 2017)中,提出了一个交叉网络作为一条流,以显式方式执行高阶特征交叉,而另一条MLP流隐式学习特征交叉。
  • xDeepFM:xDeepFM(Lian et al. 2018)采用压缩交互网络(CIN)以向量级方式捕获高阶特征交叉,并也采用MLP作为另一条流来学习位级特征交叉。
  • AutoInt+:AutoInt(Song et al. 2019)应用自注意力网络来学习高阶特征交叉。AutoInt+将AutoInt和MLP作为两个互补的流集成。
  • AFN+:AFN(Cheng, Shen, 和 Huang 2020)利用对数变换层来学习自适应阶数特征交叉。AFN+以双流方式将AFN与MLP结合。
  • DeepIM:在DeepIM(Yu et al. 2020)中,提出了一个交互机(IM)模块,以高效计算高阶特征交叉。它在两个流中分别使用IM和MLP。
  • MaskNet:在MaskNet(Wang, She, 和 Zhang 2021)中,提出了一个MaskBlock,通过结合层归一化、实例引导掩码和前馈层。并行的MaskNet是一个双流模型,它并行使用两个MaskBlocks。
  • DCN-V2:DCN-V2(Wang et al. 2021)通过更具表现力的交叉网络改进DCN,以更好地捕获显式特征交叉。它在并行版本中仍然使用MLP作为另一条流。
  • EDCN:EDCN(Chen et al. 2021)不是一个严格的双流模型,因为它提出了一个桥接模块和一个调节模块来桥接两个流的隐藏层之间的信息融合。然而,其操作限制了每个流具有相同大小的隐藏层和单元,降低了灵活性。

3.我们的模型

在这一部分,我们首先介绍简单的双流MLP基础模型,DualMLP。然后,我们描述两个可插拔模块,特征门控和交叉聚合层,这些模块构成了我们增强的模型,FinalMLP。

3.1 双流MLP模型

尽管简单,据我们所知,双流MLP模型以前没有被先前的工作报道过。因此,我们首次尝试研究这样一个模型用于CTR预测,称为DualMLP,它简单地将两个独立的MLP网络作为两个流组合起来。 具体来说,双流MLP模型可以表述如下:

\[o_1 = MLP_1(h_1), \\ o_2 = MLP_2(h_2),\]

其中:

  • $MLP_1$和$MLP_2$:是两个MLP网络。两个MLP的大小(关于隐藏层和单元)可以根据数据进行不同的设置。
  • $h_1$和$h_2$:表示特征输入
  • $o_1$和$o_2$:分别是两个流的输出表示

在大多数先前的工作(Wang et al. 2017; Guo et al. 2017; Cheng, Shen, 和 Huang 2020)中,特征输入$h_1$和$h_2$通常设置为相同的,即特征嵌入e的连接(可选地与一些池化操作一起),即,

\[h_1 = h_2 = e\]

同时,流输出通常通过简单的操作(如求和和连接)进行融合,忽略了流级交互。下面,我们将介绍两个可以分别插入到输入和输出中的模块,以增强双流MLP模型。

3.2 Stream-Specific特征选择

许多现有的研究(Guo et al. 2017; Lian et al. 2018; Wang et al. 2017; Song et al. 2019)强调了结合两种不同特征交叉网络(例如,隐式与显式,低阶与高阶,位级与向量级)的有效性,以实现准确的CTR预测。我们的目标不是设计专门的网络结构,而是通过流特定的特征选择来扩大两个流之间的差异,从而产生差异化的特征输入

受MMOE(Ma et al. 2018)中使用的门控机制的启发,我们提出了一个流特定的特征门控模块来软选择流特定的特征,即,为每个流不同地重新加权特征输入。在MMOE中,门控权重是根据特定任务的特征来重新加权专家输出的。同样,我们通过基于可学习参数、用户特征或item特征的条件来从不同视角进行特征门控,分别产生全局、user-specific或item-specific的特征重要性权重。

具体来说,我们通过上下文感知的特征门控层进行流特定的特征选择,如下所示。

\[g_1 = Gate_1(x_1), \quad g_2 = Gate_2(x_2), \\ h_1 = 2\sigma(g_1) \odot e, \quad h_2 = 2 \sigma(g_2) \odot e,\]

…(3)(4)

其中:

  • $Gate_i$:表示基于MLP的gating network
  • $x_i$:stream-specific的条件特征输入
  • $g_i$:逐元素门控权重输出
  • $\odot$: 逐元素乘(element-wise produc)

注意,从user/item特征集或将其设置为可学习参数中选择$x_i$是灵活的。通过使用sigmoid函数σ和一个乘数2将它们转换为[0, 2]范围内的值,平均值为1,我们可以获得特征重要性权重。给定连接的特征嵌入e,我们可以通过逐元素乘积⊙获得加权特征输出$h_1$和$h_2$。

我们的特征门控模块允许通过从不同视角设置条件特征$x_i$来为两个流制作差异化的特征输入。例如,图1(a)展示了一个关于user-和item-specific特征门控的案例,它分别从用户和item的视角调节每个流。这减少了两个相似MLP流之间的“同质”学习,并能够实现更互补的特征交叉学习。

3.3 Stream-Level交叉聚合

3.3.1 双线性融合(Bilinear Fusion)

如前所述,现有工作大多采用求和或concatenation作为fusion layer,但这些操作未能捕捉流级特征交叉。受计算机视觉领域广泛研究的bilinear pooling启发(Lin, RoyChowdhury, 和 Maji 2015; Li et al. 2017),我们提出了一个双线性交叉聚合层(bilinear interaction aggregation layer)来使用流级特征交叉来对流输出进行融合。如图1(c)所示,预测的点击概率公式如下。

\[\widehat{y} = \sigma(b + w_1^T o_1 + w_2^T o_2 + o_1^T W_3 o_2),\]

…(5)

其中:

  • $ b \in \mathbb{R}, w_1 \in \mathbb{R}^{d_1 \times 1}, w_2 \in \mathbb{R}^{d_2 \times 1}, W_3 \in \mathbb{R}^{d_1 \times d_2} $:是可学习的权重。
  • $d_1$和$d_2$: 分别表示 $ o_1 $ 和 $ o_2 $ 的维度。
  • $o_1^T W_3 o_2 $:是双线性项(bilinear item), 模拟了$o_1$和$o_2$之间的二阶交互。特别是,当$W_3$是一个单位矩阵时,该项模拟了点积。当将 $ W_3 $ 设置为零矩阵时,它退化为传统的连接融合与线性层,即 $ b + [w_1, w_2]^T [o_1, o_2]$

有趣的是,双线性融合与常用的FM模型也有联系。具体来说,FM通过以下方式为CTR预测对一个m维输入特征向量x(通过一位/多位特征编码和连接)进行二阶特征交叉建模:

\[\hat{y} = \sigma(b + w^Tx + x^T_{\text{upper}} P P^T)x\]

…(6)

其中:

  • $ b \in \mathbb{R}, w \in \mathbb{R}^{m \times 1}, P \in \mathbb{R}^{m \times d} $ 是可学习的权重,其中 $ d \ll m $,upper选择矩阵的严格上三角部分(Rendle 2010)。

正如我们所看到的,当$o_1=o_2$时,FM是双线性融合的一种特殊形式。

然而,当$o_1$和$o_2$是高维时,计算方程(5)的参数密集且计算成本高。例如,要融合两个1000维的输出,$ W_3 \in \mathbb{R}^{1000 \times 1000} $ 占用了100万个参数,其计算变得昂贵。为了降低计算复杂性,我们在下文中引入了我们的扩展多头双线性融合。

3.3.2 多头双线性融合(multi-head bilinear fusion)

多头注意力(multi-head attention)因其能够将来自不同的表征子空间的相同注意力池化(attention pooling)的知识进行组合,非常受欢迎。它在最近大获成功的transformer模型中带来了计算量的减少和一致的性能提升(Vaswani et al. 2017)。受其成功的启发,我们将双线性融合扩展到multi-head版本。具体来说,我们不是直接计算方程(5)中的bilinear项,而是将 $ o_1 $ 和 $ o_2 $ 分别分割成k个子空间:

\[o_1 = [o_{11}, \cdots, o_{1k}], \\ o_2 = [o_{21}, ..., o_{2k}],\]

其中:

  • k 是一个超参数
  • $ o_{ij} $ 表示第i个输出向量的第j个子空间表示(i ∈ {1, 2})。

类似于多头注意力,我们在每个子空间中执行双线性融合(bilinear fusion),将 $ o_{1j} $ 和 $ o_{2j} $ 配对为一组。然后,我们通过求和池化聚合子空间计算,得到最终预测的点击概率:

\[\hat{y} = \sigma(\sum_{j=1}^{k} BF(o_{1j}, o_{2j})),\]

其中:

  • BF 表示方程(5)中不带 sigmoid 激活的双线性融合。

通过与多头注意力相同的子空间计算,我们理论上可以通过 k 的因子减少双线性融合的参数数量和计算复杂性,即从 $ O(d_1d_2) $ 减少到 $ O(\frac{d_1d_2}{k}) $。特别是,当设置 $ k = d_1 = d_2 $ 时,它退化为逐元素乘积融合。如果 $k = 1$,则等于原始的双线性融合。 选择合适的k实现多头学习,以便模型可能获得更好的性能。在实践中,k 个子空间的多头融合在 GPU 中并行计算,这进一步提高了效率。

最后,我们的流特定特征门控和流级交互聚合模块可以插入,以产生增强的双流 MLP 模型,FinalMLP。

3.3.3 模型训练

为了训练 FinalMLP,我们应用广泛使用的二元交叉熵损失:

\[L = -\frac{1}{N} \sum_{y} y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})\]

其中:

  • y 和 $ \hat{y} $ 分别表示来自总共 N 个样本中的每个样本的真实标签和估计的点击概率。

4.实验

4.1 实验设置

数据集

我们使用四个开放基准数据集进行实验,包括 Criteo、Avazu、MovieLens 和 Frappe。我们重用(Cheng, Shen, 和 Huang 2020)预处理的数据,并遵循相同的数据分割和预处理设置。表1总结了数据集的统计信息。

评估指标

我们采用AUC作为CTR预测中最广泛使用的评估指标之一。此外,AUC提高0.1个百分点被认为是CTR预测中的显著改进(Cheng et al. 2016; Cheng, Shen, 和 Huang 2020; Wang et al. 2021)。

基线

首先,我们研究以下单一流显式特征交叉网络。

  • 一阶:逻辑回归(LR)(Richardson, Dominowska, 和 Ragno 2007)。
  • 二阶:FM(Rendle 2010)、AFM(Xiao et al. 2017)、FFM(Juan et al. 2016)、FwFM(Pan et al. 2018)和FmFM(Sun et al. 2021)。
  • 三阶:HOFM (3rd)(Blondel et al. 2016)、CrossNet (2L)(Wang et al. 2017)、CrossNetV2 (2L)(Wang et al. 2021)和CIN (2L)(Lian et al. 2018)。我们特别将最大阶数设置为“3rd”或将交互层数设置为“2L”,以获得三阶特征交叉。
  • 更高阶:CrossNet(Wang et al. 2017)、CrossNetV2(Wang et al. 2021)、CIN(Lian et al. 2018)、AutoInt(Song et al. 2019)、FiGNN(Li et al. 2019)、AFN(Cheng, Shen, 和 Huang 2020)和SAM(Cheng 和 Xue 2021),这些模型自动学习高阶特征交叉。

然后,我们研究相关工作部分介绍的一系列代表性双流CTR模型。

4.2 实现

我们重用基线模型,并基于FuxiCTR(Zhu et al. 2021),一个开源的CTR预测库,实现我们的模型。我们的评估遵循与AFN(Cheng, Shen, 和 Huang 2020)相同的实验设置,将嵌入维度设置为10,批量大小设置为4096,默认MLP大小设置为[400, 400, 400]。对于DualMLP和FinalMLP,我们将两个MLP调整为1到3层,以增强流多样性。我们将学习率设置为1e-3或5e-4。我们通过广泛的网格搜索(平均每模型约30次运行)调整所有研究模型的所有其他超参数(例如,嵌入正则化和dropout率)。我们注意到,通过优化的FuxiCTR实现和充分的超参数调整,我们获得了比(Cheng, Shen, 和 Huang 2020)报告的更好的模型性能。因此,我们报告自己的实验结果,而不是重用他们的数据,以便进行公平比较。为了促进可重复的研究,我们开源了FinalMLP和所有使用的基线代码和运行日志。

MLP与显式特征交叉

尽管特征交叉网络已被广泛研究,但MLP与精心设计的特征交叉网络之间缺乏比较。以前的工作提出了许多显式特征交叉网络,例如交叉网络(Wang et al. 2017)、CIN(Lian et al. 2018)、AutoInt(Song et al. 2019)和AFN(Cheng, Shen, 和 Huang 2020),以克服MLP在学习高阶特征交叉方面的局限性。然而,这些研究中的大多数未能直接将显式特征交叉网络与单独的MLP(即DNN或YouTubeDNN(Covington, Adams, 和 Sargin 2016))进行比较,而只是评估了双流模型变体(例如DCN、xDeepFM和AutoInt+)与MLP的有效性。在这项工作中,我们在表3中进行了这样的比较。我们列举了用于一阶、二阶、三阶和更高阶特征交叉的代表性方法。令人惊讶的是,我们观察到MLP可以与精心设计的特征交叉网络并驾齐驱甚至表现更好。例如,MLP在Criteo、MovieLens和Frappe上实现了最佳性能,而在Avazu上获得了次佳性能,与SAM相比AUC差距仅为0.02个百分点。这一观察结果也与(Wang et al. 2021)中报告的结果一致,其中显示经过良好调整的MLP模型(即DNN)能够获得与许多现有模型相当的表现。

总的来说,MLP所取得的强劲性能表明,尽管其结构简单,在学习乘性特征方面的弱点,MLP在隐式学习特征交叉方面非常具有表现力。这也部分解释了为什么现有研究倾向于将显式特征交叉网络与MLP结合作为双流模型用于CTR预测。不幸的是,其实力从未在任何现有工作中明确揭示过。受到上述观察的启发,我们进一步研究了一个未被探索的模型结构的潜力,该结构简单地采用两个MLP作为双流MLP模型。

DualMLP和FinalMLP与双流基线的比较

按照现有研究,我们对表2中所示的代表性双流模型进行了彻底比较。从结果中,我们有以下观察: 首先,我们可以看到双流模型通常优于表3中报告的单一流基线,特别是单个MLP模型。这符合现有工作,揭示了双流模型可以学习互补特征,从而实现更好的CTR预测建模。 其次,简单的双流模型DualMLP表现出乎意料地好。通过对两个流的MLP层进行精心调整,DualMLP可以实现与其他复杂双流基线相当甚至更好的性能。据我们所知,DualMLP的强劲性能在文献中从未被报道过。在我们的实验中,我们发现通过在两个流中设置不同的MLP大小来增加流网络多样性可以提高DualMLP的性能。

这激发了我们进一步开发一个增强的双流MLP模型FinalMLP。

第三,通过我们在特征门控和融合方面的可插拔扩展,FinalMLP在四个开放数据集上一致地优于DualMLP以及所有其他比较的双流基线。特别是,FinalMLP在Avazu、MovieLens和Frappe上的AUC分别显著超过了现有的最强双流模型0.12个百分点(DCNv2)、0.23个百分点(xDeepFM)和0.11个百分点(AutoInt+)。这证明了我们的FinalMLP的有效性。截至撰写本文时,FinalMLP在PapersWithCode4和BARS5(Zhu et al. 2022)的CTR预测排行榜上均名列第一。

消融研究

在这一部分,消融研究显示了对FinalMLP重要设计的调查。

特征选择和双线性融合的效果

具体来说,我们将FinalMLP与以下变体进行比较:

  • DualMLP:简单的双流MLP模型,简单地将两个MLP作为两个流。
  • w/o FS:没有通过上下文感知特征门控进行流特定特征选择模块的FinalMLP。
  • Sum:在FinalMLP中使用求和融合。
  • Concat:在FinalMLP中使用连接融合。
  • EWP:在FinalMLP中使用逐元素乘积(即哈达玛积)融合。

消融研究结果在图2中呈现。我们可以观察到,当移除特征选择模块或将双线性融合替换为其他常用的融合操作时,性能会下降。这验证了我们的特征选择和双线性融合模块的有效性。此外,我们注意到双线性融合比特征选择扮演了更重要的角色,因为替换前者会导致更多的性能下降。

图片名称

图2

多头双线性融合的效果:我们研究了我们的子空间分组技术对双线性融合的影响。表4显示了通过变化双线性融合的子空间数量(即头数k)来改变FinalMLP的性能。OOM表示在设置中发生了内存溢出错误。我们发现,使用更多的参数(即更小的k)进行融合并不总是导致更好的性能。这是因为适当的k可以帮助模型从多个视角学习流级别的特征交互,同时减少冗余交互,类似于多头注意力。通过在实践中调整k,可以在有效性和效率之间取得良好的平衡。

工业评估:我们进一步在为新闻推荐服务的生产系统中评估FinalMLP,该系统每天为数百万用户提供服务。我们首先使用3天用户点击日志的训练数据(包含12亿个样本)进行离线评估。表5显示了AUC结果。与在线部署的深度BaseModel相比,FinalMLP在AUC上提高了超过一个百分点。我们还与EDCN(Chen等人,2021年)进行了比较,EDCN是最近的一项工作,它通过两流网络之间的交互增强了DCN(Wang等人,2017年)。FinalMLP在AUC上比EDCN额外提高了0.44个百分点。此外,我们测试了从接收用户请求到返回预测结果的端到端推理延迟。我们可以看到,通过应用我们的多头双线性融合,延迟可以从使用1个头的70毫秒减少到使用8个头的47毫秒,实现了与在线部署的BaseModel(45毫秒)相同的延迟水平。此外,通过选择适当数量的头,AUC结果也略有提高。

我们最后报告了在7月18日至22日进行的在线A/B测试的结果,结果如表6所示。FinalMLP平均在CTR上实现了1.6%的改进,CTR衡量的是用户点击次数与新闻总展示次数的比率。在我们的生产系统中,这样的改进是显著的。

#

https://arxiv.org/pdf/2304.00902

Netflix团队发了篇paper《Is Cosine-Similarity of Embeddings Really About Similarity?》,对cosine相似度做了相应的研究。

摘要

余弦相似度(cosine similarity)是指两个向量间夹角的余弦值,或者等价于:归一化后的点积。一种常见的应用是:通过将余弦相似度应用于学习到的低维特征embedding,来量化高维对象之间的语义相似性。这种方法在实践中可能比未归一化的嵌入向量之间的点积效果更好,但也可能更差。为了深入了解这一经验观察,我们研究了从正则化线性模型派生的embedding,其中闭式解有助于分析洞察。我们从理论上推导了余弦相似度如何产生任意且因此无意义的“相似性”。对于某些线性模型,相似性甚至不是唯一的,而对于其他模型,它们则由正则化隐式控制。我们讨论了超出线性模型的含义:在学习深度模型时采用了不同正则化的组合;当对结果embedding取余弦相似度时,这些正则化具有隐式和非预期的影响,使结果变得不透明且可能是任意的。基于这些见解,我们警告:不要盲目使用cosine相似度,并概述了替代方案。

1.引言

离散实体通常通过学习的映射嵌入到各种领域的稠密实值向量(dense real-valued vector)中。例如,在大语言模型(LLM)中,单词基于其周围上下文进行嵌入,而推荐系统通常根据用户消费的方式学习item(和user)的embedding。这样的embedding有多方面的优点。特别是,它们可以直接作为(冻结或微调的)输入用于其它模型,它们提供了一种数据驱动的(语义)相似性概念,用来表示之前是原子和离散的实体。

虽然“余弦相似度(cosine similarity)”中的相似性指的是:与距离度量中的较大值表示更接近(较小值则相反),但它也已成为衡量感兴趣实体之间语义相似性的非常流行的度量方法。其动机在于,学习到的embedding vector的范数并不如embedding vector间的方向对齐那么重要。尽管有无数的论文报告了余弦相似度在实际应用中的成功使用,但也有人发现它在某些情况下不如其它方法,例如学习embedding间的(未归一化的)点积,参见[3, 4, 8]

在本文中,我们尝试阐明这些不一致的经验观察。我们发现,学习到的embedding余弦相似度实际上可以产生任意结果。我们发现,根本原因不在于余弦相似度本身,而在于学习到的embedding具有一定程度自由度,即使它们的(未归一化的)点积是明确定义且唯一,也可以产生任意的余弦相似度。为了获得更具一般性的见解,我们推导出解析解,这对于线性矩阵分解(MF)模型是可能的——这将在下一节详细概述。在第3节中,我们提出了可能的解决方案。第4节中的实验说明了我们在本文中得出的发现。

2.矩阵分解模型

在本文中,我们关注线性模型,因为它们允许闭式解(closed-form solutions),从而可以从理论上理解应用于学习embedding的余弦相似度度量的局限性。给定:

  • 一个矩阵$X \in R^{n × p}$
  • 包含n个数据点和p个特征(例如,在推荐系统中分别是user和item)

矩阵分解(MF)模型(或等效地在线性自编码器中)的目标是:估计一个低秩矩阵$AB^T \in R^{p×p}$

其中:

  • $A, B \in R^{p×k}, k \leq p$

使得乘积$XAB^⊤$是${X:}^1 X \approx XAB^⊤$的好的近似。

给定:

  • X是一个user-item矩阵
  • B的行:$\overset{\rightarrow}{b_i}$,通常被称为k维的item embedding
  • XA的行:$\overset{\rightarrow}{x_u} \cdot A$,可以解释为user embeddings,其中用户u的embedding是该用户消费的item embeddings $\overset{\rightarrow}{a_j}$的总和。

请注意,该模型是根据user和item embeddings之间的(未归一化的)点积定义的:

\[(XAB^T)_{u,i} = < \overset{\rightarrow}{x_u} \cdot A, \overset{\rightarrow}{b_i} >\]

然而,一旦学习了embedd,常见的做法是:考虑它们之间的余弦相似度,例如:

  • 两个item间:$cosSim(\overset{\rightarrow}{b_i}, \overset{\rightarrow}{b’_i})$
  • 两个user间:$cosSim(\overset{\rightarrow}{x_u} \cdot A, \overset{\rightarrow}{x_u’} \cdot A)$
  • user与item间:$cosSim(\overset{\rightarrow}{x_u} \cdot A, \overset{\rightarrow}{b_i})$

在下文中,我们将展示这可能导致任意结果,并且它们甚至可能不是唯一的。

2.1 训练

影响余弦相似度metric的实效(utility)的一个关键因素是:当在学习A、B的embedding时使用的正则化方法,如下所述。

考虑以下两种常用的正则化方案(它们都有封闭形式的解,见第2.2节和第2.3节):

\[\underset{A,B}{min} ||X − XAB^⊤||^2_F + λ||AB^⊤||^2_F \\ \underset{A,B}{min} ||X − XAB^⊤||^2_F + λ(||XA||^2_F + ||B||^2_F )\]

… (1) (2)

这两个训练目标在L2范数正则化方面显然有所不同:

在第一个目标中,$|AB^⊤|^2_F$ 应用于它们的乘积。在线性模型中,这种L2范数正则化可以证明等同于:使用去噪学习,即在输入层进行dropout,例如,见[6]。 此外,实验发现,在保留的测试数据上得到的预测准确率优于第二个目标的准确率[2]。 不仅在MF模型中,而且在深度学习中,通常观察到去噪或dropout(这个目标)比权重衰减(第二个目标)在保留的测试数据上带来更好的结果。

第二个目标等价于:常规的矩阵分解目标:

\[{min}_W \| X − P Q^T \|^2_F + λ(\|P\|^2_F + \|Q\|^2_F)\]

其中:

  • X被分解为$P Q^⊤$,且P = XA和Q = B。

这种等价性在 [2]中有所概述。这里的关键是,每个矩阵P和Q分别进行正则化,类似于深度学习中的权重衰减。

  • $\widehat{A}$和$\widehat{B}$:是任一目标的解(solution)
  • $R \in R^{k×k}$:任意旋转矩阵

那么众所周知,具有任意旋转矩阵$R \in R^{k×k}$ 的$\widehat{A}R$和$\widehat{B}R$也是解(solution),因为余弦相似度在这种旋转R下是不变的,本文的一个关键见解是:

  • 第一个(但不是第二个)目标对于A和B的列(即嵌入的不同潜在维度)的重缩放也是不变的:如果$\widehat{A} \widehat{B}^⊤$是第一目标的解,那么$\widehat{A}DD^−1 \widehat{B}^⊤$也是,其中D ∈ R k×k 是任意对角矩阵。

因此,我们可以定义一个新的解决方案(作为D的函数)如下:

\[\widehat{A}^{(D)} := \widehat{A}D \\ \widehat{B}^{(D)} := \widehat{B}D^{−1}\]

…(3)

反过来,这个对角矩阵D会影响学习到的user和item embedding(即:行)的归一化:

\[(X\widehat{A}^{(D)})_{(normalized)} = Ω_AX\widehat{A}^{(D)} = Ω_AX\widehat{A}D \\ \widehat{B}^{(D)}_{(normalized)} = Ω_BBˆ(D) = ΩBBDˆ −1,(4)\]

其中$Ω_A$和$Ω_B$是适当的对角矩阵,用于将每个学习到的嵌入(行)归一化为单位欧几里得范数。注意,一般来说这些矩阵不可交换,因此不同的D选择不能(精确地)通过归一化矩阵$Ω_A$和$Ω_B$来补偿。由于它们依赖于D,我们通过$Ω_A(D)$和$Ω_B(D)$明确表示这一点。因此,嵌入的余弦相似性也取决于这个任意矩阵D。

当人们考虑两个项目之间、两个用户之间或用户和项目之间的余弦相似性时,这三种组合分别为:

  • item-item:
\[cosSim(\widehat{B}^(D), \widehat{B}^(D)) = Ω_B(D) \cdot \widehat{B} \cdot D^{−2} \cdot \widehat{B}^T \cdot Ω_B(D)\]
  • user-user:
\[cosSim(X\widehat{A}^(D), X\widehat{A}^(D)) = Ω_A(D) \cdot X\widehat{A}^ \cdot D^2 \cdot (X\widehat{A})^T \cdot Ω_A(D)\]
  • user-item:
\[cosSim(X\widehat{A}^(D), \widehat{B}^(D)) = Ω_A(D) \cdot X\widehat{A} \cdot \widehat{B}^T \cdot Ω_B(D)\]

显然,所有三种组合的余弦相似性都取决于任意对角矩阵D:虽然它们都间接依赖于D,因为它影响了归一化矩阵$Ω_A(D)$和$Ω_B(D)$,但请注意,(特别受欢迎的)item-item余弦相似性(第一行)还直接依赖于D(user-user余弦相似性也是如此,见第二项)。

2.2 First Objective (Eq. 1)详述

当我们考虑全秩MF模型的特殊情况,即k = p时,余弦相似性的任意性在这里变得尤为明显。这可以通过以下两种情况来说明:

第一种:

如果我们选择: \(D = dMat(..., 1/(1+λ/σ^2)^i, ...)^(1/2)\)

那么我们有: \(\widehat{A}_{(1)}^{(D)} = \widehat{A}_{(1)} \cdot D \\ = V · dMat(\cdots, \frac{1}{(1+λ/\sigma_i^2)}, \cdots)\)

\[\widehat{B}_{(1)}^{(D)} = \widehat{B}_{(1)} \cdot D^{-1} = V\]

由于奇异向量矩阵V已经是标准化的(关于列和行),归一化$Ω_B = I$因此等于单位矩阵I。因此,关于item-item余弦相似性,我们得到:

\[cosSim(\widehat{B}_{(1)}^{(D)}, \widehat{B}_{(1)}^{(D)}) = V V^T = I\]

这是一个相当奇怪的结果,因为这意味着任何一对(不同的)项目嵌入之间的余弦相似性为零,即一个item只与自己相似,而不与任何其他item相似!

另一个显著的结果是关于user-item余弦相似性:

\[cosSim(X \widehat{A}_{(1)}^{(D)}, \widehat{B}_{(1)}^{(D)}) = Ω_A \cdot X \cdot V \cdot dMat(\cdots, \frac{1}{1 + λ/\sigma_i^2}, \cdots) · V^T \\ = Ω_A · X · \widehat{A}_{(1)}\widehat{B}_{(1)}^T\]

因为与(未归一化的)点积相比,唯一的区别在于矩阵$Ω_A$,它归一化了行——因此,当我们考虑基于预测分数为给定用户对项目进行排序时,余弦相似性和(未归一化的)点积会导致完全相同的项目的排序,因为在这种情况下行归一化只是一个无关紧要的常数。

第2种:

  • 如果我们选择:
\[D = dMat(\cdots, \frac{1}{(1+λ/σ_i^2)}, \cdots)^{-\frac{1}{2}}\]

那么我们类似于前一种情况有:

\[\widehat{B}_{(1)}^{(D)} = V \cdot dMat(\cdots, \frac{1}{1+λ/σ_i^2}, \cdots)\]

并且$\widehat{A}_{(1)}^{(D)} = V$是正交的。我们现在得到关于user-user余弦相似性:

\[cosSim(X \widehat{A}_{(1)}^{(D)}, X\widehat{A}_{(1)}^{(D)}) = Ω_A · X · X^T · Ω_A\]

即,现在用户相似性仅仅基于原始数据矩阵X,即没有任何由于学习到的嵌入而产生的平滑。关于user-item余弦相似性,我们现在得到:

\[cosSim(X\widehat{A}_{(1)}^{(D)}, \widehat{B}_{(1)}^{(D)}) = Ω_A \cdot X \cdot \widehat{A}_{(1)} \cdot \widehat{B}_{(1)}^T \cdot Ω_B\]

即,现在$Ω_B$归一化了B的行,这是我们在之前选择D时所没有的。同样,item-item余弦相似性

\[cosSim(\widehat{B}_{(1)}^{(D)}, B_{(1)}^{(D)}) = Ω_B · V · dMat(\cdots, \frac{1}{1 + λ/σ_i^2}, \cdots)^2 \cdot V^T \cdot Ω_B\]

与我们之前在D的选择中得到的奇怪结果大不相同。

总的来说,这两种情况表明,对于D的不同选择会导致不同的余弦相似性,即使学习到的模型

\[\widehat{A}_{(1)}^{(D)} \widehat{B}_{(1)}^{(D)T} = \widehat{A}_{(1)} \widehat{B}_{(1)}^T\]

对于D是不变的。换句话说,余弦相似性的结果是任意的,对这个模型来说并不是唯一的。

2.3 关于第二个目标

(公式2)的细节

公式2中的训练目标的解决方案在[7]中推导出来,读作

\[\widehat{A}_{(2)} = V_k \cdot dMat(\cdots, \sqrt{\frac{1}{σ_i} \cdot (1 - λ/σ_i)+}, \cdots)_k \\ \widehat{B}_{(2)} = V_k \cdot dMat(\cdots, \sqrt{σ_i \cdot (1 - λ/σ_i)+}, \cdots)_k\]

… (6)

其中:

  • $(y)+ = max(0, y)$
  • $X =: U \Sigma V^T$: 是训练数据X的SVD
  • $\Sigma = dMat(\cdots, σ_i, \cdots)$

注意,如果我们使用MF中常用的符号,其中:$P = XA$和$Q = B$,我们得到:

\[\widehat{P} = X\widehat{A}_{(2)} = U_k \cdot dMat(\cdots, \sqrt{σ_i \cdot (1 - \frac{λ}{σ_i})+}, \cdots)_k\]

在这里我们可以看到,在公式6中,对角矩阵:

\[dMat(..., \sqrt{σ_i \cdot (1 - \frac{λ}{σ_i})+}, \cdots)_k\]

对于user embedding和item embedding是相同的,这是由于在公式2的训练目标中的L2范数正则化 $|P|_F + |Q|_F$的对称性所预期的。

与第一个训练目标(见公式1)的关键区别在于,这里的L2范数正则化$|P|_F + |Q|_F$是分别应用于每个矩阵的,因此这个解决方案是唯一的(如上所述,直到不相关的旋转),即在这种情况没有办法将任意的对角矩阵D引入到第二个目标的解决方案中。因此,应用于这个MF变体的学习嵌入的余弦相似性产生唯一的结果。

虽然这个解决方案是唯一的,但它仍然是一个悬而未决的问题,这个关于用户和项目嵌入的唯一对角矩阵 $dMat(\cdots, \sqrt{σ_i \cdot (1 - λ/σ_i)+}, \cdots)_k$是否在实践中产生最佳可能的语义相似性。然而,如果我们相信这种正则化使得余弦相似性在语义相似性方面有用,我们可以比较两个变体中对角矩阵的形式,即比较公式6和公式5,这表明在第一个变体中任意的对角矩阵D(见上面的部分)类似地可以选择为: $D = dMat(…, p1/σi, …)k$

3.针对余弦相似性的补救措施和替代方法

正如我们上面分析的那样,当一个模型针对点积进行训练时,其对余弦相似性的影响可能是模糊的,有时甚至不是唯一的。一个显而易见的解决方案是针对余弦相似性训练模型,层归一化[1]可能会有所帮助。另一种方法是避免使用导致上述问题的嵌入空间,并将其投影回原始空间,然后在那里应用余弦相似性。例如,使用上述模型,并给定原始数据X,可以将$X\widehat{A}\widehat{B}^T$视为其平滑版本,将$X\widehat{A}\widehat{B}^T$的行视为原始空间中的user embedding,然后可以应用余弦相似性。

除此之外,同样重要的是要注意,在余弦相似性中,只有在学习了嵌入之后才应用归一化。与在学习之前或期间应用某种归一化或减少流行度偏差相比,这可能会显著降低结果的(语义)相似性。这可以通过几种方式完成。例如,统计学中的一种默认方法是标准化数据X(使每列均值为零且方差为单位)。深度学习中的常见方法包括使用负采样或逆倾向缩放(IPS)来考虑不同项目的流行度(和用户活动水平)。例如,在word2vec [5]中,通过按照它们在训练数据中的频率(流行度)的β = 3/4次幂的概率采样负样本,训练了一个矩阵分解模型,这在当时产生了令人印象深刻的词相似性。

https://arxiv.org/pdf/2403.05440v1.pdf

meta在《AdaTT: Adaptive Task-to-Task Fusion Network for Multitask Learning in Recommendations》提出了AdaTT的多任务建模方法。

摘要

多任务学习(MTL)旨在通过同时在多个任务上训练机器学习模型来提高它们的性能和效率。然而,MTL研究面临两个挑战:

  • 1)有效地建模任务之间的关系以便实现知识共享,
  • 2)共同学习任务特定(task-specific)知识和共享知识

本文提出了一种名为自适应任务融合网络(AdaTT:Adaptive Task-to-Task Fusion Network)的新模型,以解决这两个挑战。AdaTT是一个深度融合网络,具有多个levels上的专有任务单元(task-specific unit)和可选共享融合单元。通过利用一个残差机制(residual)和一个门控机制(gating)来进行任务间融合(task-to-task fusion),这些单元可以自适应地同时学习共享知识和专有任务知识。为了评估AdaTT的性能,我们使用各种任务组在公共基准和工业推荐数据集上进行实验。结果表明,AdaTT明显优于现有的最先进基线。此外,我们的端到端实验表明,与替代方案相比,该模型表现更好。

1.引言

在线推荐系统旨在为用户生成个性化的高质量推荐。这些系统的有效性通常取决于它们准确学习用户偏好的能力,这通常需要同时优化多个目标。例如,一个短视频推荐系统应该考虑用户观看视频(watch)的可能性(likelihood)和他们喜欢视频(like)的可能性(likelihood)。多任务学习(MTL)是这些用例的典型解决方案。通过在单个框架内联合训练多个任务,MTL提供了几个好处:

  • 首先,它增加了计算效率,这对于大规模在线推荐系统非常重要
  • 此外,它通过跨任务正则化(cross-task regularization)知识共享(knowledge sharing),增强了模型表现

然而,MTL也面临着独特的挑战。其中一个主要挑战是建模任务之间的关系。由于每个任务可能与其他任务具有不同程度的相关性,仅仅建模所有任务的一般共性是不够的。这个问题的复杂性随着任务数量的增加而增加。有效的任务关系建模是实现任务自适应知识共享(task-adaptive knowledge sharing)的关键。例如,“分享视频(share)”任务共享的知识可以在类似于“喜欢视频(like)”的任务中得到很大的权重,同时也可以从具有丰富示例的其它任务中吸取不同方面的知识,例如“观看视频(watch)”。另一方面,它会最小化与高度不相关的任务的共享学习(shared learning)。

  • 先前的工作[2、19]通常采用静态共享表示(static shared representations)
  • 其他工作,如cross-stitch network[24](如图2(c)所示),学习矩阵来建模多个子网络之间的关系。然而,权重对于所有样本保持不变,子网络只是松散的特定任务。
  • 最近的方法,如MMoE[22](如图2(b)所示)和PLE[29](如图2(e)所示),使用专门的门控网络(gating networks)来动态组合共享的子模块以实现灵活的共享,但是这些方法建模的任务之间的关系是模糊和间接的。

图片名称

图2 我们实验中使用的MTL模型。在多级MTL模型中,使用两个融合level来说明它们的设计。模块用不同的颜色表示:共享模块为蓝色,任务A特定模块为黄色,任务B特定模块为紫色

除了共享学习,专有任务学习(task-specific learning)也是多任务学习的一个重要组成部分。在两者之间取得适当的平衡对于解决任务冲突(task conflicts)和实现跨任务正则化(cross-task regularization)非常重要。

  • 一方面,MTL可能会遇到,负迁移(negative transfer)的问题:其中对一个任务的优化会对另一个任务的性能产生负面影响,特别是当任务具有冲突的目标时。在这种情况下,MTL模型应该自适应地强调专有任务学习。
  • 另一方面,专有任务学习过度和共享不足可能会导致过拟合,降低跨任务正则化的效益。每个任务的训练数据的数量和分布也会影响学习的重点:具有更多数据的任务可以更多地依赖于它们的专有学习,而那些具有较少数据或高度倾斜数据的任务可以更多地集中于共享学习

考虑到样本之间的差异可以使两者之间的权衡更加动态。因此,自动学习平衡这两种类型的学习非常重要。许多软参数共享模型(soft parameter sharing)可以在不需要繁琐的手动调整[2]或学习所有样本的静态结构。然而,进一步的研究是 需要理解:如何建模在共享任务学习与专有任务学习间的交互,以便提升效果。

3.模型结构

为了共同学习自适应共享表示并增强专有任务学习,我们提出了一个新模型:自适应任务融合网络(AdaTT)。AdaTT利用门控和残差机制来自适应地融合多个融合层中的专家(experts)。考虑一个具有两个预测任务的多任务学习场景。我们使用两个融合层在图1中说明了AdaTT的架构。AdaTT由多层融合网络(multi-level fusion network)任务塔(task towers)组成。融合网络(fusion networks)由任务特定和可选共享融合单元构成,而任务塔建立在融合网络之上,并与最终融合层中的任务特定单元相连。我们的框架是通用的,支持灵活选择专家模块、任务塔网络、门控模块和可配置数量的专家和融合层。 在接下来的章节中,我们首先介绍AdaTT的一个特殊case:称为AdaTT-sp,它仅使用任务特定融合单元(如图1(a)所示)。然后,我们将描述通用的AdaTT设计,如图1(b)所示。

图片名称

图1 AdaTT-sp和具有2个fusion levels的通用AdaTT。任务A和B的特定和共享模块通过颜色区分:A为黄色,B为紫色,共享为蓝色。为了说明,我们为每个任务特定单元使用了2个专家。在通用AdaTT中,我们添加了一个共享融合单元,其中只有一个专家作为示例。请注意,通用AdaTT中的共享模块并不是必需的,因此使用虚线表示。当不存在共享模块时,通用AdaTT会回退到AdaTT-sp。

3.1 AdaTT-sp

AdaTT-sp的详细设计如下所示。给定输入𝑥用于𝑇个任务,任务𝑡(𝑡=1,2,…,𝑇)的预测被公式化为:

\[y_t=h_t(𝑓_𝑡^L(𝑥))\]

…(1)

其中:

  • L:是融合层数量
  • $h_t$:表示任务𝑡的任务塔
  • $𝑓_t^L$:表示在第𝐿个融合层产生任务𝑡的融合单元的函数

这里,$𝑓_𝑡^L(𝑥)$通过使用等式(2)和(3),从底部到顶部应用融合层来计算:

\[𝑓_1^0(𝑥)=𝑓_2^0(𝑥)=\cdots=𝑓_T^0(𝑥)=𝑥\]

…(2)

\[𝑓_𝑡^l(𝑥)=𝐹𝑈_𝑡^l(𝑓_1^{(𝑙−1)}(𝑥), 𝑓_2^{𝑙−1}(𝑥), \cdots, 𝑓_𝑇^{l-1}(𝑥)), 𝑙=1 \cdots L\]

…(3)

这里,FU表示融合单元。

3.1.1 融合单元(fusion unit)

下面我们详细介绍引入等式(3)中的$𝐹𝑈_𝑡^l$的构造。对于任务𝑡,在接收到前一个融合层(fusion level)的所有输出后,我们首先会使用函数$e_{𝑡,𝑖}^l$,和输入$𝑓_t^{l-1}(𝑥)$,来为该任务构造$𝑚_𝑡$个本地专家(naive experts),表示为$𝐸_{𝑡,𝑖}^l$,即:

\[𝐸_{𝑡,𝑖}^l=e_{𝑡,𝑖}^l(f_𝑡^{l-1}(𝑥))\]

…(4)

其中:

  • $i=1,2,\cdots,𝑚_t$
  • $𝐸_{𝑡,𝑖}^l \in R^{1×𝑑^𝑙}$

在第𝑙层,每个专家网络(expert network)会产生长度为$𝑑^𝑙$的向量。为了简化表示,在第𝑙层,我们使用:

  • $𝐸_𝑡^l$:表示属于任务𝑡的experts的所有垂直拼接(vertical concatenation)
  • $𝐸^𝑙$:表示跨任务的所有experts的所有垂直拼接

具体而言,$𝐸_𝑡^l$ 和$𝐸^𝑙$表示为:

\[𝐸_𝑡^l=[𝐸_{𝑡,1}^l, 𝐸_{𝑡,2}^l,\cdots,𝐸_{𝑡,𝑚_t}^l]\]

…(5)

\[𝐸^𝑙=[𝐸_1^l,𝐸_2^l, \cdots, 𝐸_𝑇^l]\]

…(6)

其中:

  • $𝐸_𝑡^l \in R^{𝑚_t \times 𝑑^𝑙}$
  • $𝐸^𝑙 \in R^{(𝑚_1+𝑚_2+…+𝑚_𝑇)×𝑑^𝑙}$

在上述等式中:

  • $[,]$:表示将向量或子矩阵垂直堆叠成较大矩阵的操作。

由于任务可能与其他任务具有不同的相关性,$𝐹𝑈_𝑡^l$直接使用门控模块$𝐴𝑙𝑙𝐸𝑥𝑝𝑒𝑟𝑡𝐺𝐹_𝑡^l$来结合所有任务的专家$𝐸^𝑙$来模拟任务间的知识融合。此外,我们利用轻量级线性组合$𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹_𝑡^l$来融合任务𝑡的本地专家,即$𝐸_𝑡^l$。概念上,门控模块模拟共享学习,本地专家的线性组合模拟专有任务学习。具体而言,任务𝑡在第𝑙层的特定单元的输出被公式化为:

\[𝑓_𝑡^l(𝑥) = AllExpertGF_𝑡^l(𝐸^𝑙, 𝐺_𝑡^l) + NativeExpertLF_t^l(𝐸_𝑡^l)\]

…(7)

在公式7中,专家被融合如下:

\[𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹_t^l(𝐸_𝑡^l)=(𝑣_𝑡^l)^T 𝐸^{𝑡^l}\]

…(8)

其中:

  • 在𝐴𝑙𝑙𝐸𝑥𝑝𝑒𝑟𝑡𝐺𝐹中,$𝐸^𝑙$ 乘以由一个函数$𝑔_𝑡^l$生成的门控权重$𝐺_𝑡^l \in R^{(𝑚_1+𝑚_2+\cdots+𝑚_𝑇)\times 1}$
  • 在𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹中,相似的,$𝐸_𝑡^l$仅由一个可学习的向量$v_𝑡^l \in R^{𝑚_𝑡 \times 1}$组合在一起

当$𝑚_1=𝑚_2=\cdots=𝑚_𝑇=1$时,即所有融合单元仅有一个专家时,为了简化起见,$𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡 𝐿𝐹_𝑡^l(𝐸_t^l)$回退到$𝐸_𝑡^l$,将一个单位权重分配给本地专家。有许多设计选项可用于$𝑔_𝑡^l$。常见的一种是使用由softmax激活的单层MLP:

\[𝑔_𝑡^l(𝑓_𝑡^{𝑙−1}(𝑥))=𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊_𝑡^l 𝑓_𝑡^{𝑙−1}(𝑥)^T)\]

…(10)

这里:

  • $𝑊_𝑡^l \in R^{(𝑚_1+𝑚_2+\cdots+𝑚_𝑇)} × 𝑑^{𝑙−1}$是一个学习的矩阵。

3.1.2 简化

为了实现效率,考虑到公式8和公式9,我们实际上可以用零填充$(𝑣_𝑡^l)^T$以匹配$(𝐺_t^l)^T$的大小,加权并执行单个乘法来组合所有专家。因此,公式7可以简化为:

\[𝑓_𝑡^l(𝑥)=(𝑝𝑎𝑑(𝑣_𝑡^{lT} )+𝐺_𝑡^{lT}) 𝐸^𝑙\]

… (11)

正如我们所看到的,包含线性融合模块会导致计算量的最小增加。

3.2 常规版本的AdaTT

在其一般形式中,如图1(b)所示,AdaTT采用可选的共享融合单元(shared fusion units)。从概念上讲,专有任务模块pairs间的融合模拟了细粒度共享(fine-grained sharing),而专有任务模块和共享模块间的融合则传递了适用于所有任务的广泛知识。这导致了高效灵活的任务间知识共享。通用AdaTT的计算方式与AdaTT-sp类似,除了最后一个fusion level,共享融合单元不执行任何融合操作,只为专有任务融合单元产生专家输出进行处理。

总之,AdaTT明确地学习任务特定知识并自适应地与共享知识融合。融合是任务自适应的,因为:

  • 1.门控模块学习与任务本地专家相关的残差。
  • 2.每个任务特定单元使用特定的门控模块融合专家,该门控模块以输入为条件(从第二个融合级别开始是唯一的)。

通过允许每个任务直接而灵活地从其他任务中学习共享知识,AdaTT相比于仅依赖于共享专家作为媒介的PLE具有更大的灵活性。此外,AdaTT可以选择仅使用任务特定专家。与PLE不同,它在每个融合单元内的不同线性融合模块中单独融合本地专家,而不是在单个门控模块中处理所有选定的专家。这种设计增强了每个融合级别后任务特定学习的鲁棒性。尽管它很简单,但我们的实验表明,它胜过了PLE,后者将选择应用于不同的融合单元中的专家,并使用不同的路由路径来区分这些专家。

4.实验

https://arxiv.org/pdf/2304.04959.pdf