分布式
google DistBelief:Large Scale Distributed Deep Networks
画风迁移
LSTM
NLP
L2R
条件随机场(CRF)
Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data
1.GBDT
Friedman <Greedy Function Approximation: A Gradient Boosting Machine>
陈天奇 Introduction to Boosted Trees
kdd2016: XGBoost: A Scalable Tree Boosting System
2.CTR平滑
Click-Through Rate Estimation for Rare Events in Online Advertising
3.神经网络
-
1.Yann LeCunGradient-based learning applied to document recognition
-
2.Yann LeCun+Bengio Convolutional networks for images, speech, and time series
-
3.Marcus Liwicki.. A Novel Approach to On-Line Handwriting Recognition Based on Bidirectional Long Short-Term Memory Networks
-
4.V. Dumoulin and F. Visin 深度学习卷积算法指南
word2vec
- 1.Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean Efficient Estimation of Word Representations in Vector Space
- 2.Tomas Mikolov, Ilya Sutskever, Kai ChenDistributed Representations of Words and Phrases and their Compositionality
Sentence2Vec
From Word Embeddings To Document Distances
Distributed Representations of Sentences and Documents
Hierarchical Softmax
-
Andriy Mnih, Geoffrey Hinton A Scalable Hierarchical Distributed Language Model
-
邱锡鹏 词嵌入与语言模型
LDA
- Parameter estimation for text analysis
- Blei:Latent Dirichlet Allocation
- Blei:Online learning for LDA
推荐系统
- 1.google news:Personalized News Recommendation Based on Click Behavior
- 2.google news:Google news personalization: scalable online collaborative filtering
- 3.google news:ppt: Google News Personalization
- 4.yahoo:Personalized Recommendation on Dynamic Content Using Predictive Bilinear Models
- 7.Interweaving Trend and User Modeling for Personalized News Recommendation
-
8.Analyzing User Modeling on Twitter for Personalized News Recommendations
-
9.Open user profiles for adaptive news systems: help or harm?
- 微软:机器学习驱动下的内容分发和个性化推荐
-
The Wisdom of the Few:A Collaborative Filtering Approach Based on Expert Opinions from the Web
-
Restricted Boltzmann Machines for Collaborative Filtering 目前Netflix使用的主要推荐算法之一
-
LFM Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model
-
Information Seeking-Convergence of Search, Recommendations and Advertising
-
Performance of Recommender Algorithm on top-n Recommendation Task
- google:Improving User Topic Interest Profiles by Behavior Factorization
- google:youtube 2016: Deep Neural Networks for YouTube Recommendations 中文:YouTube基于深度神经网络的推荐系统
- google:Label Partitioning For Sublinear Ranking
LambdaMART