介绍

facebook在2019在《Deep Learning Recommendation Model for Personalization and Recommendation Systems》。

摘要

facebook开发了一种SOTA的深度学习推荐模型(DLRM)并提供了Pytorch和Caffe2的实现。另外,还设计了一种专门的并行化scheme利用在embedding tables上的模型并行机制来缓和内存限制,利用数据并行机制来从fully-connected layers中扩展(scale-out)计算。我们比较了DLRM与已存在推荐模型.

1.介绍

在大型互联网公司中的许多任务上,部署了个性化和推荐系统,包括:CTR预估和rankings。尽管这些方法具有很长的历史,这些方法最近才拥抱神经网络。对于个性化和推荐,朝着深度学习模型架构设计方向贡献了两个主要视角。

第一个视角来自于推荐系统。这些系统最初部署了content filtering,其中:运营人员会将products按categories分类,而用户选择它们喜欢的categories,因而可以基于它们的偏好进行match[22]。该领域接着演化成使用collaborative filtering,基于用户过往行为(比如:用户对商品的评分)进行推荐。最近邻方法[21]通过将users和products进行分组(grouping)在一起来提供推荐,latent factor方法通过MF技术以及特定隐式factors将users和products进行特征化,并成功部署。

第二个视角来自预测分析(predictive analytics),它依赖于统计模型根据给定数据来对events进行分类(classify)或预测(predict)。预测模型从简单模型(比如:linear或logistic regression)转向到深度网络上来建模。为了处理类别型数据,这些模型采用了embeddings,它会将one-hot和multi-hot vectors转化成在一个抽象空间中的dense表示。该抽象空间可以被解释成由推荐系统发现的latent factors空间。

在本paper中,我们引入了一个个性化模型,它可以通过将上述两个视角进行联合来表示。模型会:

  • 1.使用embeddings来处理稀疏特征(sparse features)(它可以表示categorical data)
  • 2.使用一个multilayer perceptron(MLP)来处理dense features

接着使用[24]中的统计技术将这些features进行显式交叉。最终,它会使用另一个MLP来post-processing交叉来寻找event probability。我们将该模型称为:DLRM(深度学习推荐模型)。见图1。该模型的PyTorch和Caffe2实现已公开。

2.模型设计与架构

在本节中,我们会描述DLRM的设计。我们会从网络的high-level组件开始,并解释how和why它们以一种特别的方式组合在一起,对未来模型设计有启发,接着描述组成模型的low-level operators和primitives,用于未来的硬件和系统设计。

2.1 DLRM组件

通过回顾以往模型,DLRM的high-level组件可以很容易理解。我们会避免完整回顾,把精力集中在早期模型的4个技术上,它可以在DLRM中的高级组件中被解释。

2.1.1 Embeddings

为了处理类型化数据,embeddings可以将每个category映射到一个在抽象空间中的dense表示上。特别的,每个embedding lookup可以被解释成使用一个one-hot vector \(e_i\)来获得embedding table \(W \in R^{m \times d}\)相应的row vector:

\[w_i^T = e_i^T W\]

…(1)

在更复杂的情况下,一个embedding也可以表示成多个items的加权组合**,它具有一个关于weights的multi-hot vector:

\[a^T = [0, \cdots, a_{i_1}, \cdots, a_{i_k}, \cdots, 0]\]

其中,

  • 对于\(i=i_1, \cdots, i_k\),元素\(a_i \neq 0\),否则为0 ,其中\(i=i_1, \cdots, i_k\)是相应的items。

注意,t embedding lookups的一个mini-batch可以写成:

\[S = A^T W\]

…(2)

其中,sparse matrix为:\(A = [a_1, \cdots, a_t]\)。

DLRMs会使用embedding tables来将categorical features映射成dense representations。然而,在这些embeddings被设计后,如何利用它们来生成更精准的预测呢?我们先来回顾下latent factor。

2.1.2 Matrix Factorization

推荐问题的常用形式,我们给定一个集合S:用户会对一些商品进行评分。我们通过两个vector:

  • \(w_i \in R^d, i=1,\cdots, n\)来表示第i个商品,
  • \(v_j \in R^d, j=1, \cdots, m\)来表示第j个user

以便寻找所有的ratings,其中n和m各表示products和users的总数。更严格的,当第i个商品已经被第j个user评分时,集合S包含了(i,j) tuples。

MF方法通过最小化下面的等式来求解该问题:

\[min \sum\limits_{(i,j) \in S} r_{ij} - w_i^T v_j\]

…(3)

其中:

  • \(r_{ij} \in R\)是第j个user对第i个product的rating,\(i=1, \cdots, m; j = 1, \cdots, n\)。

接着,假设:\(W^T = [w_1, \cdots, w_m]\)和\(V^T = [v_1, \cdots, v_n]\),我们希望将full matrix的ratings \(R=[r_{ij}]\)近似为矩阵乘法 \(R \approx W V^T\)。注意,W和V可以被解释成两个embedding tables,其中每一行表示在latent factor space中的一个user/product。这些embedding vectors的dot product会生成后续rating的一个有意义的预测,这对于FM和DLRM的设计来说是一个key observation

2.1.3 Factorization Machine

在经典问题中,我们希望定义一个预测函数:\(\phi: R^n \rightarrow T\),从一个输入数据点\(x \in R^n\)到一个target label \(y \in T\)上的预测。作为示例,我们可以通过定义 \(T = \lbrace +1, -1 \rbrace\)预测CTR,其中:+1表示点击,-1表示未点击。

FM使用categorical data,通过定义以下形式的模型,来将二阶交叉并入到一个线性模型中:

\[\hat{y} = b + w^T x + x^T upper(VV^T) x\]

…(4)

其中:

  • 1.\(V \in R^{n \times d}\)
  • 2.\(w \in R^n\)
  • 3.\(b \in R\)
  • 4.\(d << n\)的参数
  • 5.upper会严格选择该矩阵的上三角部分【24】。

FM与SVM和polynomial kernels有明显区别,因为它们将二阶交叉矩阵分解成latent factors(或embedding vectors)(和MF很像),它能更有效地处理稀疏数据。通过只捕获不同embedding vectors pairs间的交叉,这可以极大减小二阶交叉的复杂度,生成线性的计算复杂度

2.1.4 MLP(Multilayer Perceptrons)

同时,在机器学习上的最近许多成功都归因于deep learning。DL最基础的模型是:MLP。预测函数由一串交替的FC layers和activation function \(\sigma: R \rightarrow R\)组成:

\[\hat{y} = W_k \sigma(W_{k-1} \sigma(W_1 x + b_1) \cdots) + b_{k-1}) + b_k)\]

…(5)

其中:

  • \(W_l \in R^{n_l \times n_{l-1}}\)是weight matrix
  • \(b_l \in R^{n_l}\):表示对于\(layer \ l=1,\cdots,k\)的bias

该方法被用于捕获更复杂的交叉。例如,给定足够参数,MLP会具有够深和够宽,可以拟合任意想预测的数据。这些方法的变种被广告用于CV和NLP中。例如:NCF被用于MLPerf benchmark的一部分,它使用MLP,而非dot product来计算MF中embeddings间的交叉。

2.2 DLRM架构

我们已经描述了在RS中不同的模型。我们将这些想法进行组合来构建SOTA的个性化模型。

假设用户和商品通过许多连续型特征(continuous features)类别型特征(categorical features)进行描述。

  • 为了处理categorical features,每个categorical feature可以通过一个相同维度的embedding vector表示,即MF中latent factors。
  • 为了处理continous features,会通过一个MLP来进行转换,它会生成和embedding vectors相同长度的dense representation

我们将根据FMs提供的处理sparse data的方式,将它们传给MLPs,显式地(explicitly)计算不同特征间的二阶交叉(second-order interaction)。这可以通过使用所有embedding vectors的pairs和dense features间的dot product来做到。用这些dot products可以使另一个MLP(top 或 output MLP)将original-processed dense features和post-processed一起concatenated,接着被feed到一个sigmoid function来提供一个概率。

我们将产生的模型称为:DLRM。如图1所示,并在表1中展示了PyTorch和Caffe2的DLRM所用到的一些operators。

表1

2.3 与之前的模型比较

许多deep learning-based的推荐模型,使用相似的底层思想来生成高阶项来处理sparse features。Wide&Deep, Deep&Cross, DeepFM, xDeepFM网络,例如,设计专有网络来有系统的构建高阶交叉。这些网络接着将来自这些专有模型和MLP的结果进行求和(sum),将它传给一个linear layer及sigmoid activation来生成一个最终概率。DLRM以一种结构化的方式与embeddings交互,通过只考虑由final MLP中embeddings pairs间的dot-product生成的cross-terms,模拟了FM对模型进行极大地降维。对于在其它网络的二阶交叉外的更高阶交叉,使用额外的计算/内存开销并不值。

DLRM和其它网络之间的一个关键不同点是:这些网络是如何对待embedded feature vectors和它们的cross-terms的DLRM(以及XDeepFM)会将每个feature vector看成单个unit来表示单个category,其它像DCN(Deep&Cross)网络会将feature vector中的每个element看成是一个新的unit,这会生成不同的cross-terms。因此,Deep&Cross网络不仅会生成不同feature vectors的elements间的cross-terms(这和DLRM通过dot product方式一样),也会生成在相同feature vector的elements间的cross-terms,从而生成更高的维度。

3.并行化(Parallelism)

模型个性化和推荐系统,需要大且复杂的模型来估计大量数据上的价值。DLRMs特别包含了许多数目的参数,多阶的幅度要超过其它常见的deep learning模型(比如:CNN),transformer、RNN、GAN。这会导致训练时间上常达数周或更久。因此,对这些模型进行高效并行化,以便解决在实际规模中的问题。

如前面章节所示,DLRMs会以成对(coupled)的方式,同时处理categorical features(使用embeddings)以及continuous features(使用bottom MLP)。Embeddings会占据参数的大部分,一些tables每个都需要超过多个GBs的内存,使得DLRM对内存容量和带宽很敏感。embeddings的size使得它禁止使用数据并行化(data parallelism),因为它需要在每个设备上复制很大的embeddings。在许多cases中,这种内存限制需要模型分布跨多个设备,以便能满足内存容量需求。

在另一方面,MLP参数在内存上是更小的,但需要大量计算。因此,data-parallelism对MLPs更好,因为它可以让不同devices上的samples并发处理,只需要在当累积更新(accumulating updates)时需要通信。我们的并行化DLRM会使用一个embeddings的模型并行化(model parallelism)以及MLPs的数据并行化(data parallelism)的组合,来减缓由embeddings生成的内存瓶颈,而MLPs上的forward和backward propagations并行化。通过将model和data parallelism进行组合,是DLRM的唯一需求,因为它的架构和大模型size所导致;这样的组合并行化在Caffe2或PyTroch中并不支持(以及其它流行的DL框架),因此,我们设计了一种定制实现。我们计划在将来提供它的详细效果研究。

在我们的setup中,top MLP和interaction operator需要访问部分来自bottom MLP的mini-batch以及和所有embeddings。由于模型并行化已经被用于跨devices分布embeddings,这需要一个个性化的all-to-all通信。在embedding lookup的尾部,对于在mini-batch中的所有samples(必须根据mini-batch维度进行分割、以及与相应devieces进行通信)、对于在这些devices上的embedding tables,每个device都具有一个vector,如图2所示。Pytorch或Caffe2都不会提供model parallelism的原生支持;因此,我们通过显式将embedding operators(PyTorch的nn.EmbeddingBag, Caffe2的SparseLengthSum)映射到不同devices上来实现它。个性化的all-to-allcwpwy使用butterfly shuffle operator来实现,它可以将生成的embedding vectors进行切片(slices),并将它们转移到目标设备(target devices)上。在当前版本,这些transfers是显式的copies,但我们希望后续使用提供的通信原语(比如:all-gather以及send-recv)进一步optimize。

我们注意到,对于数据并行化MLPs,在backward pass中的参数更新会使用一个allreduce进行累积(accumulated),并以一种同步方式将它用在每个device的参数复制上,确保在每个device上的参数更新在每轮迭代上是一致的。在Pytorch中,data parallelism可以通过nn.DistributedDataParallel和nn.DataParallel模块来开启,将在每个device上的model复制,使用必要的依赖插入allreduce。在Caffe2中,我们会在梯度更新前手工插入allreduce。

4.数据

为了measure模型的acuracy,并测试它的整体效果,并将单独operators特征化,我们需要为我们的实现创建或获得一个dataset。我们模型的当前实现支持三种类型的datasets:random、synthetic、public datasets。

前两个dataset对于从系统角度实验我们的模型很有用。特别的,它允许我们通过生成即时数据,并移除数据存储依赖,来测试不同的硬件属性及瓶颈。后一个dataset允许我们执行真实数据的实验,并measure模型的accuracy。

4.1 Random

回顾DLRM,它接收continuous和categorical features作为inputs。前者可以通过生成一个随机数目的vector,通过使用一个uniform/normal(Gaussian)分布(numpy.random rand/randm缺省参数)。接着通过生成一个matrix来获得mini-batch inputs,其中每行对应在mini-batch中的一个element。

为了生成categorical features,我们需要决定在一个给定multi-hot vector中具有多少非零元素。benchmark允许该数字可以是fixed或在一个[1,k]的范围内random。接着,我们生成整型indices的相应数字,范围在[1,m]中,其中,m是在embedding W中的rows数目(2)。最后,为了创建一个mini-batch的lookups,我们将以上indices进行concatenate,并将每个单独的lookup使用lengths和offsets进行描述。

4.2 Synthetic

对应于categorical features,有许多理由支持定制索引的生成。例如,如果我们的应用使用一个特定dataset,但我们不希望出于私人目的共享它,那么我们可以选择通过distributions来表示categorical features。这可以潜在作为一种隐私保护技术的可选方法(用于联邦学习(federated learning))。同时,如果我们希望练习系统组件(比如:学习内存行为)。。。

4.3 Public

参考

deepmind在19年发了篇关于feedback loops的paper:《Degenerate Feedback Loops in Recommender Systems》,我们可以来看下它的paper介绍:

摘要

在生产环境中的推荐系统大量使用机器学习。这些系统的决策会影响user beliefs和preferences,从而影响学习系统接受到的feedback——这会创建一个feedback loop。这个现象被称为“echo chambers”或“filter bubbles”。本paper提供了一个新的理论分析,来检查user dynamics的角色、以及推荐系统的行为,从而从filter bubble效应中解脱出来。另外,我们提供了实际解决方案来减小系统的退化(degeneracy)。

介绍

推荐系统广泛被用于提供个性化商品和信息流。这些系统会采用user的个人特征以及过往行为来生成一个符合用户个人偏好的items list。虽然商业上很成功,但这样的系统会产生一个关于窄曝光(narrowing exposure)的自我增强的模式,从而影响用户兴趣,这样的问题称为“echo chamber”和“filte bubble”。大量研究都致力于对曝光给用户的items set上使用favor diversity来解决。然而,echo chamber和filter bubble效应的当前理解很有限,实验分析表明会有冲突结果。

在本paper中,我们将echo chamber定义为这样的效应:通过重复曝光一个特定item或item类目,一个用户的兴趣被正向地(positively reinforced)、或负向地(negatively)增强。这是Sunstein(2009)的定义概括,其中,该术语通常指的是:对相似政治意见的over-exposure和limited-exposure,会增强个人的已存在信念(beliefs)。Pariser(2011)引入了filter bubble的定义,来描述推荐系统会选择有限内容来服务用户。我们提供了一个理论方法来允许我们单独考虑echo chamber和filter bubble效应。我们将用户兴趣看成是一个动态系统(dynamical system),并将兴趣看成是系统的退化点(degeneracy points)。我们考虑不同模型的动态性,并确定系统随时间degenerate的充分条件集合。我们接着使用该分析来理解推荐系统所扮演的角色。最终我们展示了:在一个使用模拟数据和多个经典bandit算法的仿真学习中,在user dynamics和推荐系统actions间的相互作用。结果表明,推荐系统设计的许多缺陷(pitfalls)和缓和策略。

相关工作

。。。

3.模型

我们考虑一个推荐系统,它会与用户随时间一直交互。在每个timestep t上,recommender系统会从一个有限的item set M中提供l个items给一个user。总之,该系统的目标是:将可能感兴趣的items呈现(present)给用户。我们假设:

  • 在timestep t上,user在一个item $a \in M$上的兴趣,可以通过函数\(\mu_t: M \rightarrow R\)来描述。
  • 如果用户对该item很感兴趣,那么\(\mu_t(a)\)很大(positive);反之为很小(negative)

给定一个推荐(recommendation) \(a_t = (a_t^1, \cdots, a_t^l) \in M^l\),用户基于它当前的兴趣 \(\mu_t(a_t^1), \cdots, \mu_t(a_t^l)\)提供一些feedback \(c_t\)。该交互具有多个effects:在推荐系统传统文献中,feedback \(c_t\)被用于更新用于获取推荐\(a_t\)推荐系统的internal model \(\theta_t\),接着新模型\(\theta_{t+1}\)会依赖\(\theta_t, a_t, c_t\)。实际上,\(\theta_t\)通常会预测user feedback的分布来决定哪个items \(a_t\)应被呈现给该用户。在本paper中,我们关注另一个效应(effect),并显式考虑用户与推荐系统的交互可能会在下一次交互时以不同的items来变更他的兴趣,这样,该兴趣\(\mu_{t+1}\)会依赖于\(\mu_t, a_t, c_t\)。交互的完整模型如图1所示。

图片名称

图1

我们对用户兴趣的演化研究很感兴趣。这样的一个演化示例是,兴趣会通过用户与所推荐items的交互进行增强,也就是说:

  • 如果用户在timestep t上对一个item a进行点击,那么\(\mu_{t+1}(a) > \mu_t(a)\);
  • 如果a被展示但未被点击,则\(\mu_{t+1}(a) < \mu_t(a)\). (这里, \(c_t \in \lbrace 0, 1 \rbrace^l\)可以被定义成所对应items的关于点击的indicator vector)

为了分析echo chamber或filter bubble效应,我们对于用户兴趣在什么时候发生非常剧烈变化非常感兴趣。在我们的模型中,这会转成\(\mu_t(a)\)采用任意不同于初始兴趣\(\mu_0(a)\)的值:大的positive values表示用户会对item a变得非常感兴趣,而大的negative values表示用户不喜欢a。正式的,对于一个有限item set M,我们会问到:L2-norm \(\| \mu_t - \mu_0 \|_2 = (\sum_{a \in M} (\mu_t(a) - \mu_0(a))^2)^{1/2}\)是否可以变得任意大?如果满足下面条件,几乎必然用户的兴趣序列\(\mu_t\)被称为“弱退化(weakly degenerate)”(证明见附录):

\[\underset{t \rightarrow \infty} {lim} sup || \mu_t - \mu_0 ||_2 = \infty,\]

…(1)

关于degenracy的”stronger”概念,需要满足:一旦\(\mu_t\)远离\(\mu_0\),它就是个stronger degeneracy。序列\(\mu_t\)是一个较强的degenrate,( almost surely)需满足:

\[\underset{t \rightarrow \infty} {lim} || \mu_t - \mu_0 ||_2 = \infty\]

…(2)

下一节中,我们将展示,在\(\mu_t\)的动态演进上的充分条件较缓和时,degeracy发生的强弱。

对于一个无限item set M的情况,存在多种方式来扩展上述定义。出于简化,我们只考虑使用\(\| \mu_t - \mu_0 \|_2\)来替代等式(1)和等式(2)中的\(sup_{a \in M} \mid \mu_t(a) - \mu_0(a) \mid\),当M是有限时,它等于原始定义。

3. 用户兴趣动态性——Echo Chamber

由于items通常以多样的类目(t diverse categorie)的方式呈现,我们简化猜想:它们间是相互独立的。通过对于所有t (例如:\(M = \lbrace a \rbrace\)),设置\(l=1\)和\(a_t^1 = a\),我们可以移除推荐系统的影响,并单独考虑用户的动态性( Dynamics)。这使得我们分析echo chamber effect:如果item a被无限次推到,兴趣 \(\mu_t(a)\)会发生什么?

由于a是固定的,为了简化概念,我们将\(\mu_t(a)\)替换成\(\mu_t\)。给定\(a_t\),根据图1,\(\mu_{t+1}\)是一个关于\(\mu_t\)的函数(可能随机,由于\(\mu_{t+1}\)依赖于\(c_t\)和\(\mu_t\),\(c_t\)依赖于\(\mu_t\))。我们考虑当漂移量(drift) \(\mu_{t+1} - \mu_t\)是一个非线性随机函数时的通用case;对于drift的deterministic模型在附录B中。

非线性随机模型(Nonlinear Stochastic Model)

\[\mu_{t+1} = \mu_t + f(\mu_t, \xi_t)\]

其中:

  • 我们假设\(\mu_0 \in R\)是固定的
  • \((\xi_t)_{t=1}^{\infty}\)是一个关于独立均匀分布的随机变量的无限序列,它引入噪声到系统中(例如:\(\mu_{t+1}\)是一个\(\mu_t\)的随机函数)
  • 函数 \(f: R \times [0, 1]\)是假设是可测的,但其它任意。通过\(U([0, 1])\)来定义[0,1]上的均匀分布,假设:
\[\bar{f}(\mu) = E_{\xi \sim U([0,1])} [f(\mu, \xi)]\]

是当\(\mu_t = \mu\)的期望增量\(\mu_{t+1} - \mu_t\)。我们也定义了:

\[F(\mu, x) = P_{\xi \sim U([0,1])} (f(\mu, \xi) \leq x)\]

是increment的累积分布。\(\mu_t\)的渐近行为依赖于f,但在mild假设下,系统会微弱(定理1)/较强(定理2)退化。

定理1(弱退化weak degeneracy)。假设F对于所有\(\mu \in R\)在\((\mu, 0)\)上是连续的,存在一个\(\mu_o \in R\),使得:

  • 1) 对于所有\(\mu \geq \mu_o\),有\(F(\mu, 0) < 1\)
  • 2) 对于所有\(\mu \geq \mu_o\),有\(F(\mu, 0) > 0\)

那么序列\(\mu_t\)是weakly degenerate,比如:\(\underset{t \rightarrow \infty}{lim} sup \mid \mu_t \mid = \infty\)

该假设保证了在任意闭区间内,存在一个常数概率,当分别从\(\mu_o\)的左侧/右侧开始时,该random walk会逃离区间左侧/右侧。在stronger condition下,可以保证random walk的分散性(divergence)。

定理2 (强退化: strong degeneracy)

假设定理1恒定,另外存在\(c \in R\)使得 \(\| \mu_{t+1} - \mu_t \| \leq c\),存在一个\(\epsilon > 0\),使得对于所有足够大的\(\mu\),有\(f(\mu) > \epsilon\),对于所有足够小的\(\mu\)有\(f(\mu) \leq - \epsilon\)。接着,\(limit_{t \rightarrow \infty} \mu_t = \infty\)或者\(limit_{t \rightarrow \infty} \mu_t = -\infty\)。

直觉上,如果用户兴趣具有一些关于drift的非零概率,weak degeneracy在一个随机环境中发生。而strong degeneracy会持有额外的\(\mu_{t+1} - \mu_t\)被限制,对于\(\mu_t\)足够大/小,而增量\(\mu_{t+1} - \mu_t\)具有positive/negative drift,它大于一个constant。

定理1和2表明,用户兴趣会在非常温和的条件下退化(degenerate),特别的是在我们的模似实验中。在这样的cases中,如果一个item(或一个item category)是被展示有限多次时,degeneracy可以被避免,否则你只能寄希望于控制\(\mu_t\)退化的有多快了(例如:趋向于\(\infty\))。

4.系统设计角色——filter bubble

在之前的部分讨论了对于不同user interest dynamics的degeneracy的条件。在本节中,会检查另一面:推荐系统动作对于创建filter bubbles上的影响。我们通常不知道现实世界用户兴趣的动态性。然而,我们考虑echo chamber/filter bubble的相关场景:其中在一些items上的用户兴趣具有退化动态性(degenerative dynamics),并检查了如何设计一个推荐系统来减缓degeneracy过程。我们会考虑三个维度:model accuracy,曝光量(exploration amount),growing candidate pool

4.1 Model accuracy

推荐系统设计者的一个常见目标是,增加internal model \(\theta_t\)的预测accuracy。然而,模型accuracy如何与greedy optimal \(a_t\)组合一起来影响degeneration的速度?对于exact predictions的极端示例,例如:\(\theta_t = \mu_t\),我们会将这样的预测模型为“oracle model”。我们会在前提假设法(surfacing assumption)下讨论,oracle模型与greedily optimal action selection组合来生成快速的degeneracy。

为了具体分析该问题,对于\(\mu_t(a)\)的\(a \in M\),我们会关注degenerate线性动态模型,例如:\(\mu_{t+1}(a) = (1+k) \mu_t(a) + b\)。接着,我们可以为\(\mu_t(a)\)求解,对于\(\mid 1+k(a) \mid > 1\)来获得:

\[\mu_t(a) = (\mu_0(a) + \frac{b(a)}{k(a)} (1 + k(a))^t - \frac{b(a)}{k(a)}\]

Sufacing Assuption:

假设\([m] = \lbrace 1,2, \cdots, m \rbrace\)是size=m的candidate set。如果一个items子集 \(S \subset [m]\)会产生positive degenerate (例如,对于所有\(a \in S\), \(\mu_t(a) \rightarrow +\infty\)),那么我们假设:存在一个时间\(\tau > 0\),对于所有\(t \geq \tau\),S会占据根据\(\mu_t\)值生成的top \(\mid S \mid\)的items。该\(\mu_t\)由指数函数 \(\mid 1 + k(a) \mid\)的base value进行排序。

如果给定足够的曝光(exposure)时间,surfacing assumption可以确保很快地将items surface退化到top list上。它可以被泛化到关于\(\mu_t\)的非线性随机动态性上,从而提供:来自S的items具有一个稳定的随时间退化速度\(\mid \mu_t(a) - \mu_0(a) \mid /t\)的排序。

在通用的surfacing assumption下,在时间\(\tau\)之后,退化(degeneration)的最快方式是:根据\(\mu_t\)或oracle model的\(\theta_t\)来服务top l items。即使该assuption有一定程度的冲突,oracle model仍会产生非常高效的退化(degeneracy),通过根据\(\mu_t\)来选择top l items,由于较高的\(\mu_t\),他不会接受到positive feedback,从而增加\(\mu_{t+1}\)、并增强过往选择。

实际上,推荐系统模型是不准确的(inaccurate)。我们可以将inaccurate models看成是具有不同级别的noises(添加到\(\theta_t\))的oracle model

4.2 探索量(Amount of Exploration)

考虑一种\(\epsilon\)-random exploration,其中\(a_t\)总是从一个有限candidate pool [m]中(它在\(\theta_t\)上具有一个uniform \(\epsilon\) noise),根据\(\theta_t^{'} = \theta_t + U([-\epsilon, \epsilon])\),选择出top l items。

给定相同的模型序列\(\theta_t\),\(\epsilon\)越大,系统退化(degenerate)越慢。然而,实际上,\(\theta_t\)从observations上学到,在一个oracle model上添加的random expoloration可能会加速退化(degeneration):random exploration可以随时间展示最正向的degenerating items,使得suracing assumption更可能为true(在图5中,我们在仿真实验中展示了该现象)。另外,如果user interests具有degenerative dynamics,随机均匀推荐items会导致degeration,虽然相当慢。

接着我们如何确保推荐系统不会使得user interests退化(degenerate)?一种方法是,限制一个item服务给user的次数(times), 越多次会使得用户兴趣动态性退化。实际上,很难检测哪个items与dynamics退化相关,然而,如果所有items都只服务一个有限次数,这通常会阻止degeneration,这也暗示着需要一个不断增长的candidate items池子。

4.3 Growing Candidate Pool M

有了一个不断增长的(growing) candidate pool,在每个timestep时,会有一个关于new items的额外集合可提供给该user。从而,function \(\mu_t\)的domain会随时间t的增加而扩展(expands)。线性增加新items通常是一个避免退化的必要条件,因为在一个有限/任意次线性(sublinearly)增长的candidate pool上,通过鸽巢原理(pigeon hole principle),必须存在至少一个item,在最坏情况下它会退化(degenerate)(在定理2描述的通用条件下)。然而,有了一个至少线性增长的candidate pool M,系统会潜在利用任意item的最大服务次数来阻止degeneration。

5.模拟实验

本节考虑一个\(\mu_t\)简单的degenerative dynamics,并检查在5个不同的推荐系统模型中的degeneration速度。我们进一步演示了,增加new items到candidate pool中会有一个对抗system degeneracy的有效解法。

我们为图1中一个推荐系统和一个用户间的交互创建了一个simulation。初始size=\(m_0\),在timestep t上的size=\(m_t\)。在timestep t时,一个推荐系统会从\(m_t\)个items中,根据内部模型\(\theta_t\)来选择top l 个items \(a_t = (a_t^1, \cdots, a_t^l)\)服务给一个user

该user会独立考虑l items的每一个,并选择点击一个子集(也可能不点击,为空),从而生成一个size=l的binary vector \(c_t\),其中\(c_t(a_t^i)\)会给出在item \(a_t^i\)上的user feedback,根据\(c_t(a_t^i) \sim Bernoulli(\phi(\mu_t(a_t^i)))\),其中\(\phi\)是sigmoid function \(\phi(x) = 1/(1 + e^{-x})\)。

接着该系统会基于过往行为(past actions)、feedbacks和当前模型参数\(\theta_t\)来更新模型\(\theta_{t+1}\)。我们假设,用户兴趣通过\(\theta(a')\)增加/减少,如果item \(a'\)会收到/未收到一个点击,例如:

\[\mu_{t+1}(a_t^i) - \mu_t(a_t^i) = \begin{cases} \delta(a_t^i) & \text{if $ c_t(a_t^i) = 1 $ } \\ -\delta(a_t^i) & \text{otherwise} \end{cases}\]

…(3)

其中,function \(\delta\)会从candidate set映射到R上。从定理2中,我们知道对于所有item,有\(\mu_t \rightarrow \pm \infty\)。在该实验中,我们设置l=5,并从一个均匀随机分布\(U([-0.01, 0.01])\)中抽样drift \(\delta\)。对于所有items,用户的初始兴趣\(\mu_0\)是独立的,它们从一个均匀随机分布U([-1,1])中抽样得到。

内部推荐系统模型根据以下5个算法更新:

  • Random model
  • Oracle
  • UCB Multi-armed bandit
  • Thompson Multi-armed bandit

6.1 Echo Chamber & Filter Bubble effect

我们通过在一个fixed size \(m_t = m = 100\)、time horizon T=5000的candidate pool上运行仿真,来检查echo chamber和filter bubble效应。

在图2中,我们展示了user interest \(\mu_t\)(左列)的degenreation、以及每个item的serving rate(右列),因为每个推荐模型会随时间演化。一个item的serving rate展示了在report interval内服务的频次。为了清楚地观察该分布,我们根据report time上的z-values对items进行排序。尽管所有模型会造成user interest degeneration,degeneration的speeds相当不同(Optimal Oracle > Oracle, TS, UCB > Random Model)。Oracle, TS 和 UCB是基于\(\mu_t\)优化的,因此我们可以看到对于\(\mu_t\)有一个positive的degenerative dynamics。Optimal Oracle会直接在degeneration speed上进行优化,而不会在\(\mu_t\)上,因此我们可以看到在\(\mu_t\)上同时有一个positive和negative degeneration。Random Model也会在两个方向上对\(\mu_t\)进行drifts,但以一个更慢的rate。然而,除了Random Model外,在所服务的top items上和top user interests会非常快速地收窄降到\(l=5\)的最positive的reinfofced items上。

图片名称

图2

Degenracy Speed

接着,我们在fixed和growing的两种candidate sets上,为5个推荐系统模型比较了degeneracy speed。由于测量系统degeneracy的L2矩离对于所有五种模型来说是线性对称的,我们可以在有限candidate pools上,对于不同的实验设定比较\(\mid \mu_t - \mu_0 \mid_2 /t\)。

图片名称

图3 5000个time steps上的系统演进,其中在report interval为500。结果是在30次运行上的平均,共享区域表示标准差。在degeneracy speed上,Optimal Oracle > Oracle > TS > UCB > Random

图3展示了5种模型的degeneracy speed,。。。。我们可以看到,Optimal Oracle会产生最快的degnereation,接着是:Oracle, TS,UCB。Random Model最慢。

Candidate Pool Size

在图4a中,我们比较了Optimal Oracle、UCB、TS的degenreacy speed \(\|\| \mu_t - \mu_0 \|\|_2 /t\),直到5000 time steps,candidate pool sizes \(m=10, 10^2, 10^3, 10^4\)。除了random model,在给定一个大的candidate pool下,我们可以看到UCB会减慢degeneracy最多,因为它会首先强制探索任意unserved item。对于bandit算法,一个越大的candidate pool对于exploration需要一个更长时间。在给定time horizon下,由于candidate pool size增长到10000 UCB的dengeracy speed,从未达到峰值,但事实上会在给定一个更长时间上增长。TS具有越高的degereracy speed,因为在new items上具有更弱的exploration。Optimal Oracle 在给定一个更大pool上加速degeneration,因为比起一个更小的pool,它会潜在选择具有更快degenerative的items。

图片名称

图4

另外,在图4b中,我们画出了所有5个模型的degeneracy speed,对于T=20000, 对比candidate pool sizes的相同变化。Optimal Oracle 和Oracle的degeneracy speed会随着candidate set的size增长。实际上,具有一个大的candidate pool可以是一个临时解法(temporary solution)来降低系统degeneration。

Noise Level的效应

接着我们展示了internal model inaccuracy在degeneracy speed上的影响。我们对比使用不同均匀随机噪声量的Oracle model,例如:系统根据noisy internal model \(\theta_t^{'} = \theta_t + U([-\epsilon, \epsilon])\)来对外服务top l items。candidate pool具有fixed size \(m=100\)。在图5中,我们从0到10来区分\(\epsilon\)。与直觉相反的是( Counter-intuitively),添加噪声到Oracle中会加速degeneration,因为对比起由\(\mu_0\)排序的top l items的fixed set,添加噪声会使得具有更快degenerative的items会被偶然选中,更可能满足Surfacing Assumption。给定\(\epsilon > 0\),我们可以看到,随着noise level的增长,在degeneracy speed上具有一个单调递增的阻尼效应(damping effect)。

图片名称

图5 在Oracle model上具有不同noise levels \(\epsilon \in [0, 10]\)的degeneracy speed,直到T=20000. 在Oracle中添加noise会加速degeneration,但随着noise level的增长,degneracy会缓下来

Growing Candidate Pool

我们通过计算\(sup_{a \in M} \mid \mu_t(a) - \mu_0(a)\mid /t\),将degeneracy speed的定义扩展到一个有限的candidate pool上。由于degeneracy speed对于所有5种模型不是渐近线性的(asymptotically linear),我们会在10000个time steps上直接检查sup distance \(sup_{a \in M} \mid \mu_t(a) - \mu_0(a) \mid\)。为了构建在不同growth speed上的growing candidate pools,我们定义了一个增长函数\(m_t = \lfloor m_0 + l t^{\eta}\rfloor\),通过不同增长参数\(\eta = 0, 0.5, 1, m_0 = 100\)定义。在图6中,我们在10个独立运行上对结果进行平均。对于所有growth rates,Oracle和Optimal Oracle都是degenerate的。Random Model会在sublinear growth \(\eta=0.5\)上停止degeneration,UCB也如此,这归因于之前unserved items上进行强制exploration,尽管它的trajectory具有一个小的上翘(upward tilt)。TS模型会在sublinear growth上degenerates,但在linear growth \(\eta=1\)上停止degernation。对于所有模型,growth rate \(\eta\)越高,他们degerate会越慢,如果他们完全这样做的话。当全部可用时,线性growing candidate set和continuous random exploration看起来是一个不错的方法,来对抗\(\mu_t\)的dynamics来阻止degeneracy。

图片名称

图6 5个模型的比较,它们使用growing candidate pools,具有不同的rates \(\eta = 0, 0.5, 1.0\),degeneracy直到T=10000, 在10个运行结果上平均得到。对于所有growth rates,Oracle和Optimal Oracle都是degenerate的。Random Model和UCB会在sublinear growth上停止generation,而TS model需要linear growth才会停止degeneration。

参考

在《The Impact of Popularity Bias on Fairness and Calibration in Recommendation》paper中,提出了polularity bias与miscalibration之间具有一定的关联:

摘要

最近,在fairness-aware的推荐系统上收获了许多关注,包括:在不同users或groups上提供一致performance的fairness。如果推荐不能公平地表示某一个确定user group的品味,而其它user groups则与他们的偏好一致时,则一个推荐系统可以被认为是unfair的。另外,我们使用一个被称为“miscalibration”的指标来measure一个推荐算法响应用户的真实偏好程度,我们会考虑多个算法在miscalibration上的不同程度。在推荐上一个知名类型的bias是polularity bias,在推荐中有少量流行items被过度呈现(over-represented),而其它items的majority不会获得大量曝光。我们推测,popularity bias是导致在推荐中的miscalibration的一个重要因素。我们的实验结果使用两个真实数据集,展示了不同user groups间algorithmic polularity bias和他们在popular items上的兴趣程度的强相关性。另外,我们展示了,一个group受algorithmic polularity bias的影响越多,他们的推荐是miscalibrated也越多。最后,我们展示了具有更大popularity bias趋势的算法会具有更大的miscalibration。

1.介绍

在推荐生成中近期关注的一个热点是:fairness。推荐的fairness在推荐的不同domain、不同users或user groups的特性(比如:protected vs. unprotected)、以及系统设计者的目标下具有不同的含义。例如,[12]中将fairness定义成不同user groups间accuracy一致性。在他们的实验中,观察到,特定groups(比如:女性)会比男性获得更低的accuracy结果。

用来衡量推荐质量的一个metrics是:calibration,它可以衡量推荐分发与用户评分过的items的一致性。例如,如果一个用户对70%的action movies以及30%的romance movies评过分,那么,该用户在推荐中也期望看到相似的pattern[27]。如果该ratio与用户profile不同,我们则称推荐是miscalibrated。Miscalibration自身不能被当成unfair,因为它只能简单意味着推荐不够个性化。然而,如果不同的users或user groups在它们的推荐中都具有不同程度的miscalibration,这可能意味着一个user group的unfair treatment。例如,[28]中定义了一些fairness metrics,它关注于不同user groups间estimation error的一致性效果。

协同推荐系统的一个显著限制是popularity bias:popular items会被高频推荐,在一些cases中,推荐甚至超过它们的popularity,而大多数其它items不能获得合适比例的关注。我们将algorithmic popularity bias定义成:一个算法扩大了在不同items上已存在的popularity差异。我们通过popularity lift指标来measure该增强效应(amplification),它表示在input和output间平均item polularity的差异。比如,关于popularity bias可能会有疑惑,可能有以下原因:long-tail items(non-popular)对于生成一个用户偏好的完整理解来说很重要。另外,long-tail推荐也可以被理解成是一个社会福利(social good);存在popularity bias的market会缺乏机会来发现更多obscure的产品,从而被大量大品牌和知名artists占据。这样的market会越来越同质化(homogeneous),为创新提供更少的机会。

在本paper中,我们推荐:popularity bias是导致推荐列表miscalibration的一个重要因素。

。。。

2.相关工作

3.Popularity bias和miscalibration

3.1 Miscalibration

miscalibration用来measure用户真实偏好与推荐算法间差异程度。前面提到,如果在所有用户上都存在miscalibration,可能意味着个性化算法的failure。当不同user groups具有不同程度的miscalibration时,意味着对特特定user groups存在unfair treatment。

。。。

为了measure 推荐的miscalibration,我们使用[27]中的metric。假设u是一个user,i是一个item。对于每个item i,存在一个features集合C来描述它。例如,一首歌可能是pop、jazz,或一个电影的genres可以是action、romance、comedy等。我们使用c来表示这些独立categories之一。我们假设每个user会对一或多个items进行评分,这意味着会对属于这些items的features c感兴趣。对于每个user u的两个分布:一个是u评分过的所有items间的categories c的分布,另一个是u的所有推荐items间categories c的分布:

  • \(p_u(c \| u)\):在过去用户u评分过的items集合\(\Gamma\)上的feature c的分布为:
\[p_u(c | u) = \frac{\sum\limits_{i \in \Gamma w_{u,i} p(c|i)}}{\sum\limits_{i \in \Gamma} w_{u,i}}\]

…(1)

其中\(w_{u,i}\)是item i的权重,表示user u评分的频率。本paper中可以将w设置为1. 更关注不同分布上的差异,而非user profile的时序方面.

  • \(q_u(c \| u)\):推荐给user u的items list的feature c上的分布:
\[q_u(c|u) = \frac{\sum\limits_{i \in \wedge} w_r(i) p(c|i)}{ \sum\limits_{i \in \wedge} w_r(i)}\]

…(2)

\(\wedge\)表示推荐items集合。item i的weight则表示推荐中的rank r(i)。比如:MRR或nDCG。此外我们将\(w_r\)设置为1, 确保\(q_u\)和\(p_u\)可比。

在两个分布间的dissimilarity程度用来计算推荐中的miscalibration。常见的比方法有:统计假设检验。本文则使用KL散度来作为miscalibration metric。在我们的数据中,许多profiles没有ratings,这会导致在\(p_u\)上出现零值,同样具有推荐列表只关注特定features,对于一些users也在\(q_u\)上也会出现零值。对于没有observations的情况KL散度是undefined。作为替代,我们使用Hellinger distance H,它适用于存在许多0的情况。miscalibration的定义如下:

\[MC_u(p_u, q_u) = H(p_u, q_u) = \frac{|| \sqrt{p_u} - \sqrt{q_u}||_2}{\sqrt{2}}\]

…(3)

通过定义发现,H distance满足三角不等式。\(\sqrt{2}\)可以确保\(H(p_u, q_u) \leq 1\)。

对于每个group G的整体的miscalibration metric \(MC_G\)可以通过在group G中所有users u的\(MC_u(p,q)\)的平均来获得。例如:

\[MC_G(p, q) = \frac{\sum_{u \in G} MC_u(p_u, q_u)}{|G|}\]

….(4)

fairness

和[27]相似,本文将unfair定义为:对于不同user groups具有不同程度miscalibration时,则存在unfair。存在许多方式来定义一个user group,可以基于以下features:gender、age、occupation(职业)、education等。相似的,我们也可以基于它们的兴趣相似程度来定义user group。例如:对某些category上的兴趣度。

3.2 rating data中的Popularity Bias

推荐算法受popularity bias影响。也就是说,少量items会被推荐给多个users,而大多数其它items不会获得大量曝光。该bias可能是因为rating data的天然特性会倾向于popular items,因为该bias会存在algorithmic amplification。图1-b展示了两个user A和B的rated items的百分比。我们可以看到,user A的推荐被popularity bias高度影响,而user B在它们推荐中则不存在popularity bias的增强效应。

在许多领域,rating data会倾向于popular items——许多流行items会获得大量ratings,而其余items则具有更少的ratings。图2展示了item popularity的长尾分布。在其它datasets中也有相似的分布。流行的items之所以流行是有原因的,algorithmic popularity bias通常会将该bias放大到一个更大的程度。

并非每个用户都在流行items上具有不同程度的兴趣[4,22]。也会存在用户只能非流行、利基(niche)的items感兴趣。推荐算法也需解决这些用户的需求。图3展示了在不同user profiles上rated items的average popularity。用户首先会基于items的average popularity进行sort,接着绘出data。在movielens上,在图的最右侧和右侧,表示存在少量user,它们具有大量average item popularity,中间部分大量用户的分布具有0.1到0.15之间的average item popularity。在Yahoo Movies中,具有少量users具有low-popularity profiles,否则,distribution是相似的。这些图表明,用户在popular items上具有不同程度的偏向。

由于原始rating data上的imbalance,通常在许多情况下,算法会增强该bias,从而过度推出popular items,使得它们具有更大的机会被更多users进行评分。这样的推荐循环会导致rich-get-richer、poor-get-poorer的恶性循环。然而,并非每个推荐算法对popularity bias具有相同的放大能力(ampli€cation power)。下一部分描述了,测量推荐算法所传播的popularity bias的程度。经验上,会根据popularity bias增强来评估不同算法的performance。

4.方法

略.

参考

介绍

alibaba在《Personalized Re-ranking for Recommendation》介绍了一种reranking模型。

摘要

ranking是推荐系统的核心问题,通常,一个ranking函数会从labeled dataset中学到,并会为每个单独item产生一个ranking score。然而,它可能是次优的(sub-optimal),因为scoring function被应用在每个独立item上,没有显式考虑item间的相互影响,以及用户偏好/意图间的不同。因此,这里提出了一种个性化的re-ranking模型。通过直接使用一个已经存在的ranking feature vectors,提出的re-ranking模型可以很轻易地部署成在任意ranking算法之后跟着的一个follow-up模块。它会通过采用一个transformer结构来对在推荐列表中的所有items信息进行有效编码,来直接优化整个推荐列表。特别的,transformer使用一种self-attention机制,它直接建模在整个list中任意items pair间的关系。我们证实,通过引入pre-trained embedding来为不同用户学习个性化编码函数。在offline和online的实验结果上均有较大提升。

1.介绍

通常,在推荐系统中的ranking不会考虑在list列表中其它items(特别是挨着的items)的影响。尽管pairwise和listwise l2r方法尝试解决该问题,但它们只关注充分利用labels(比如:click-through data)来优化loss function,并没有显式建模在feature space中items间的相互影响。

一些工作[1,34,37]尝试显式建模items间的相互影响,重新定义由之前ranking算法给出的intial list,这被称为“re-ranking”。构建该scoring function的主要思路是:将intra-item patterns编码成feature space。state-of-the-arts的方法有:RNN-based(比如:GlobalRerank[37]和DLCM[1])。它们会将初始列表(intial list)按顺序feed给RNN-based结构,并在每个timestep上输出编码后的vector。然而,RNN-based方法对建模在list中items间的交叉的能力有限。之前编码的item的feature信息会沿着编码距离退化(degrade)。同时,由于并行化,transformer的编码过程比RNN-based方法更高效。

除了items间的交叉外,交叉的个性化编码函数可以被考虑用于re-ranking。对推荐系统进行re-ranking是user-specific的,决取于用户的偏好。对于一个对价格敏感的用户,在re-ranking模型中,对“price”特征间进行交叉更重要。常见的global encoding function可能不是最优的,因为它会忽略每个用户在特征分布间的不同。例如,当用户关注价格对比时,具有不同价格的相似items趋向于在list中更聚集。当用户没有明显的购买意图时,推荐列表中的items趋向于更分散。因此,我们在transformer结构中引入一种个性化模块来表示关于item interactions用户偏好和意图。在我们的个性化re-ranking模型中,可以同时捕获:在推荐列表中的items、以及用户间的交叉。

2.相关工作

我们的工作主要是,重新定义由base ranker给出的initial ranking list。在这些base rankers间,l2r是一种广泛使用的方法。l2r方法可以根据loss function分为三类:point-wise、pairwise、listwise。所有这些方法可以学习一个global scoring function,对于一个特定feature的权重会被全局学到。然而,这些features的weights应可以意识到:不仅items间的交叉、以及user和items间的交叉。

【1-3,37】的工作主要是re-ranking方法。它们使用整个intial list作为input,并以不同方式建模在items间的复杂依赖。[1]使用unidirectional GRU来将整个list的信息编码到每个item的表示。[37]使用LSTM、[3]使用pointer network,不仅编码整个list信息,也会由decoder生成ranked list。对于这些使用GRU or LSTM的方法来编码items间的依赖,encoder的能力通过encoding distance进行限制。在我们的paper中,我们使用transfomer-like encoder,它基于self-attention机制以O(1) distance来建模任意两个items间的交叉。另外,对于那些使用decoder来顺序生成ordered list的方法,它们不适合online ranking系统,因为需要有严格的延迟。由于sequential decoder使用在time t-1上选中的item作为input来在time t上选择item,它不能并列行,需要n倍的inferences,其中n是output list的长度。[2]提出了一种groupwise scoring function,它可以对scoring进行并列化,但它的计算开销很高,因为它会枚举在list中所有可能的item组合。

3.re-ranking模型

在本节中,我们首先给出了一些关于l2r以及re-ranking的先验知识。接着对问题公式化来求解。概念如表1所示。

表1:

l2r方法在ranking中被广泛使用,为推荐和信息检索生成一个ordered list。l2r方法会基于items的feature vector学习一个global scoring function。有了该global function,l2r方法会通过在candidate set中的每个item。该global function通常通过对以下loss L最小化得到:

\[L = \sum\limits_{r \in R} l( \lbrace y_i, P(y_i | x_i;\theta) | i \in I_r \rbrace )\]

…(1)

其中:

  • R是对于推荐所有用户请求的集合。
  • \(I_r\)是对于请求\(r \in R\)的items的candidate set
  • \(x_i\)表示的是item i的feature space
  • \(y_i\)是在item i上的label (例如:click or not)
  • \(P(y_i \mid x_i; \theta)\)是由ranking model给出的对于参数\(\theta\)的预测点击概率
  • l是通过\(y_i\)和\(P(y_i \mid x_i; \theta)\)计算得到的loss

然而,对于学习一个好的scoring function来说,\(x_i\)是不足够的。我们发现推荐系统的ranking应考虑以下额外信息:

  • (a)item-pairs间的相互影响 [8,35]
  • (b)users和items间的交叉(interactions)

在item-pairs间的相互影响,可以通过使用已经存在的LTR模型为请求r从inital list \(S_r=[i_1, i_2, \cdots, i_n]\)直接学到。[1][37][2][3]提出了方法来更好利用item-pairs间的相互信息。然而,很少研究去关注users和items间的interactions。item-pairs的相互影响,对于不同用户来说是不同的。在本paper中,我们引入了一种个性化矩阵(personlized matrix) PV来学习user-specific encoding function,它可以建模item-pairs间的个性化相互影响。模型的loss function可以被公式化成等式(2)。

\[L = \sum\limits_{r \in R} l( \lbrace y_i, P(y_i \mid X, PV; \hat{\theta}) | i \in S_r \rbrace )\]

…(2)

其中:

  • \(S_r\)是由之前ranking model给出的inital list
  • \(\hat{\theta}\)是我们的re-ranking model的参数
  • X是在list中所有items的feature matrix

4.个性化re-ranking模型

在本节中,我们首先给出了关于PRM(Personalized Re-ranking Model)的总览。接着详细介绍每一部分。

4.1 模型架构

PRM的结构如图1所示。模型包含三个部分:

  • input layer
  • encoding layer
  • output layer

它会将由之前的ranking模型生成的关于items的intial list作为input,并输出一个re-ranked list。详细结构分挨个介绍。

图片名称

4.2 Input Layer

input layer的目的是,为在initial list中的所有items准备representations,并将它feed给encoding layer。首先,我们具有一个固定长度的intial sequential list \(S=[i_1, i_2, \cdots, i_n]\),它由之前的ranking方法给出。与之前ranking方法相同,我们具有一个raw feature matrix \(X \in R^{n \times d_{feature}}\),在X中的每一行表示每个\(i \in S\)的item对应的raw feature vector \(x_i\)。

Personalized Vector(PV)

对两个items的feature vectors进行encoding,可以建模它们之间的相互影响,但这些影响进行扩展将会影响那些未知用户。因而需要学习user-specific encoding function。尽管整个intial list的representation可以部分影响用户的偏好,但对于一个强大的personlized encoding function来说它是不够的。如图1(b)所示,我们将raw feature matrix \(X \in R^{n \times d_{feature}}$与一个个性化矩阵\)PV \in R^{n \times d_{pv}}\(进行concat来获取中间(intermediate)的embedding matrix\)E’ \in R^{n \times (d_{feature} + d_{pv})}$$,如等式(3)。PV通过一个pre-trained model生成,它会在下一节中介绍。PV的performance增益可以由evaluation部分被介绍。

\[E' = \left[ \begin{array} x_{i_1}; pv_{i_1} \\ x_{i_2}; pv_{i_2} \\ \cdots \\ x_{i_n}; pv_{i_n} \end{array} \right]\]

…(3)

position embedding(PE)

为了利用在intial list中的顺序信息,我们将一个position embedding \(PE \in R^{n \times (d_{feature}+d_{pv})}\)注入到input embedding中。接着,该embedding矩阵可以用等式(4)计算。本paper中会使用一个可学习的PE,它的效果要比[28]中固定的position embedding要略微好些。

\[E'' = \left[ \begin{array} x_{i_1}; pv_{i_1} \\ x_{i_2}; pv_{i_2} \\ \cdots \\ x_{i_n}; pv_{i_n} \end{array} \right] + \left[ \begin{array} pe_{i_1} \\ pe_{i_2} \\ \cdots \\ pe_{i_n} \end{array} \right]\]

…(4)

最后,我们使用一个简单的feed-forward网络来将feature matrix \(E'' \in R^{n \times (d_{feature} + d_{pv}}\)转成\(E \in R^{n \times d}\),其中:d是encoding layer中每个input vector中潜在维度(latent dimensionality)。E可以通过等式(5)公式化:

\[E = EW^E + b^E\]

…(5)

其中,\(W^E \in R^{(d_{feature} + d_{pv}) \times d}\)是投影矩阵,\(b^E\)是d维向量。

4.3 Encoding Layer

如图1(a)所示,encoding layer的目标是,将item-pairs间的相互影响、以及其它额外信息进行集成,这些额外信息包含:用户偏好、intial list S的ranking顺序。为了达到该目标,我们采用Transfomer-like encoder,因于Transformer已经在许多NLP任务中被证明是有效的,特别是在机器翻译中。Transformer中的self-attention机制特别适合我们的re-ranking任务,因为它可以直接建模任意两个items间的相互影响,忽略掉两者间的距离。没有了距离衰减(distance decay),Transfomer可以捕获更多在intial list中离得较远的items间的交叉。如图1(b)所示,我们的encoding模块包含了\(N_x\)个关于Transformer encoder的块(blocks)。每个块(block)(如图1(a)所示)包含了一个attention layer和一个Feed-Forward Network(FFN) layer。

Attention Layer

attention函数如等式(6)所示:

\[Attention(Q,K,V) = softmax(\frac{QK^T}{\sqrt{d}})V\]

…(6)

其中矩阵Q, K, V各自表示queries、keys和values。d是matrix K的维度,为了避免内积的大值。softmax被用于将内积值转化成为value vector V添加权重。在我们的paper中,我们使用self-attention,其中:Q, K和V从相同的矩阵进行投影。

为了建模更复杂的相互影响,我们使用multi-head attention,如等式(7)所示:

\[S' = MH(E) = Concat(head_1, \cdots, head_h) W^O \\ head_i = Attention(EW^Q, EW^K, EW^V)\]

…(7)

其中,\(W^Q, W^K, W^V \in R^{d \times d}\)。\(W^O \in R^{hd \times d_{model}}\)是投影矩阵。h是headers的数目。h的不同值间的影响会在下一节被研究。

FFN(Feed-forward Network)

该position-wise FFN的函数主要是为了使用在input vectors不同维度间的非线性(non-linearity)和交叉(interacitons)来增强模型。

对Encoding Layer进行Stacking

这里,我们使用attention模块,后面跟着position-wise FFN作为一块(block)Transformer encoder。通过对多个blocks进行stacking,我们可以得到更复杂和高阶的相互信息(mutual information)。

4.4 Output Layer

output layer的函数主要为每个item \(i = i_1, \cdots, i_n\)生成一个score。(如图1(b)所示Score(i))我们在softmax layer之后使用一个linear layer。softmax layer的output是每个item的点击概率,被标记为:\(P(y_i \mid X, PV; \hat{\theta})\)。我们使用\(P(y_i \mid X, PV, \hat{\theta})\)作为\(Score(i)\)来在one-step中对items进行re-rank。Score(i)的公式为:

\[Score(i) = P(y_i \mid X, PV; \hat{\theta}) = softmax(F^{(N_x)}W^F + b^F), i \in S_r\]

…(8)

其中:

  • \(F^{(N_x)}\)是Transformer encoder的\(N_x\)个blocks的output
  • \(W^F\)是可学习的投影矩阵
  • \(b^F\)是bias term
  • n是在intial list中的items数目

在训练过程中,我们使用click-through data作为label并最小化等式(9)的loss function:

\[L = - \sum\limits_{r \in R} \sum\limits_{i \in S_r} y_i log(P(y_i | X, PV; \hat{\theta})\]

…(9)

4.5 个性化模块

在本节中,我们会引入该方法来计算个性化矩阵PV,它表示user和items间的interactions。使用PRM来学习PV的最简单办法是,通过re-ranking loss以end-to-end的方式进行学习。在re-ranking任务中学到的task-specific representation缺少用户的一般偏好。因此,我们可以利用一个pre-trained NN来产生用户个性化embeddings PV,它接着被用做PRM模型的额外features。pre-trained NN可以从平台的所有click-through logs上学到。图1(c)展示了pre-trained模型的结构。sigmoid layer会输出:在给定所有行为历史\((H_u)\)和用户的side information时,关于item i、user u的点击概率\((P(y_i \mid H_u, u; \theta')\)。用户的side information包括:gender、age和purchasing level等。模型的loss通过一个point-wise cross-entropy函数来计算,如等式(10)所示:

\[L = \sum\limits_{i \in D} (y_i log( P(y_i | H_u, u; \theta')) + (1-y_i) log(1-P(y_i | H_u,u;\theta')\]

…(10)

其中:

  • D是user u在平台上展示的items set。
  • \(\theta'\)是pre-trained model的参数矩阵
  • \(y_i\)是item i的label

受[13]的启发,我们在sigmoid layer之前采用hidden vector作为personlized vector \(pv_i\)(如图1c所示),feed到我们的PRM模型中。

图1c展示了pre-trained模型的可能架构,其它模型如:FM, FFM, DeepFM, DCN, FNN和PNN也可以做为生成PV的替代方法。

5.实验

参考

介绍

youtube在2019公布了它的MMoE多目标排序系统《Recommending What Video to Watch Next: A Multitask Ranking System》。

摘要

在本paper中,我们介绍了一个大规模多目标排序系统,用于在工业界视频分享平台上推荐下一个要观看的视频。该系统会面临许多挑战,包括:存在多个竞争性的排序目标(ranking objectives),以及在user feedback中的隐式选择偏差(implicit selection biases)。为了解决这些挑战,我们探索了多种软参数共享技术(soft-parameter sharing techniques),比如:Multi-gate Mixture-of-Experts,以便对多个排序目标进行有效最优化(optimize)。另外,我们会采用一个Wide&Deep框架来减缓选择偏差(selection biases)。我们演示了我们提出的技术可以在youtube推荐质量上产生有效提升。

介绍

在本paper中,我们描述了一个关于视频推荐的大规模排序系统。也就是说:在给定用户当前观看的一个视频的情况下,推荐该用户可能会观看和享受的下一个视频。通常推荐系统会遵循一个two-stage设计:candidate generation、ranking。该paper主要关注ranking。在该stage,推荐器会具有数百个候选,接着会应用一个复杂的模型来对它们进行排序,并将最可能观看的items推荐给用户。

设计一个真实世界的大规模视频推荐系统充满挑战:

  • 通常有许多不同的、有时甚至有冲突的待优化目标。例如,我们想推荐用户点击率高、愿与朋友共享的、包括观看高的视频
  • 在该系统中通常有隐式偏差(implicit bias)。例如,一个用户通常点击和观看一个视频,仅仅只因为它的排序高,而不是因为用户最喜欢它。因此,从当前系统的数据生成来进行模型训练会是有偏的,这会造成(feedback loop effect)效应[33]。如何有效和高效地学习减少这样的biases是个开放问题。

为了解决这样的挑战,我们为ranking system提出了一个有效的多任务神经网络架构,如图1所示。它会扩展Wide&Deep模型,通过采用Multi-gate Mixture-of-Experts(MMoE) [30]来进行多任务学习。另外,它会引入一个浅层塔结构(shallow tower)来建模和移除选择偏差。我们会应用该结构到视频推荐中:给定当前用户观看的视频,推荐下一个要观看的视频。我们在实验和真实环境中均有较大提升。

图1 我们提出的ranking系统的模型架构。它会消费user logs作为训练数据,构建Multi-gate Mixture-of-Experts layers来预测两类user behaviors,比如:engagement和satisfaction。它会使用一个side-tower来纠正ranking selection bias。在顶部,会组合多个预测到一个最终的ranking score

特别的,我们首先将我们的多任务目标分组成两类:

  • 1) 参与度目标(engagement objectives),比如:用户点击(user clicks),推荐视频的参与度
  • 2) 满意度目标(satisfaction objectives),比如:用户喜欢一个视频的程度,在推荐上留下一个评分

为了学习和估计多种类型的用户行为,我们使用MMoE来自动化学习那些跨潜在冲突的多目标共享的参数。Mixture-of-Experts[21]架构会将input layer模块化成experts,每个expert会关注input的不同部分。这可以提升从复杂特征空间(由多个模块生成)中学到的表示。

接着,通过使用多个gating network,每个objective可以选择experts来相互共享或不共享。

为了建模和减小来自有偏训练数据的选择偏差(selection bias,比如:position bias),我们提出了添加一个shallow tower到主模型中,如图1左侧所示。shallow tower会将input与selection bias(比如:由当前系统决定的ranking order)相关联,接着输出一个scalar作为一个bias项来服务给主模型的最终预测。该模型架构会将训练数据中的label分解成两部分

  • 1.从主模型中学到的无偏用户效用(unbiased user utility)
  • 2.从shallow tower学到的估计倾向评分(estimated propensity score)

我们提出的模型结构可以被看成是Wide&Deep模型的一个扩展,shallow tower表示Wide部分。通过直接学习shallow tower和main model,我们可以具有优点:学习selection bias,无需对随机实验resort来获取propensity score。

为了评估我们提出的ranking系统,我们设计了offline和live实验来验证以下的效果:

  • 1) 多任务学习
  • 2) 移除一个常见的selection bias (position bias)

对比state-of-art的baseline方法,我们展示了我们提出的框架的改进。我们在Youtube上进行实验。

主要贡献有:

  • 介绍了一种end-to-end的排序系统来进行视频推荐
  • 将ranking问题公式化成一个多目标学习问题,并扩展了Multi-gate Mixture-of-Experts架构来提升在所有objectives上的效果
  • 我们提出使用一个Wide&Deep模型架构来建模和缓和position bias
  • 我们会在一个真实世界的大规模视频推荐系统上评估我们的方法,以及相应的提升

2.相关工作

3.问题描述

本节,我们首先描述了推荐下一次要观看的视频的问题,我们引入了一个two-stage setup。

除了上述提到的使用隐式反馈来构建ranking systems挑战外,对于真实的大规模视频推荐问题,我们需要考虑以下因素:

  • 多模态特征空间(Multimodal feature space)。在一个context-aware个性化推荐系统中,我们需要使用从多模态(例如:视频内容、预览图、音频、标题、描述、用户demographics)来学习候选视频的user utility。从多模态特征空间中为推荐学习表示,对比其它机器学习应用来说是独一无二的挑战。它分为两个难点:
    • 1) 桥接来自low-level的内容特征中的语义gap,以进行内容过滤(content filtering)
    • 2) 为协同过滤学习items的稀疏表示
  • 可扩展性(Scalability)。可扩展性相当重要,因为我们正构建一个数十亿用户和视频的推荐系统。模型必须在训练期间有效训练,在serving期间高效运行。尽管ranking system在每个query会对数百个candidates进行打分,真实世界场景的scoring需要实时完成,因为一些query和context信息不仅仅需要学习数十亿items和users的表示,而且需要在serving时高效运行。

回顾下我们的推荐系统的目标是:在给定当前观看的视频和上下文(context)时,提供一个关于视频的ranked list。为了处理多模态特征空间,对于每个视频,我们会抽取以下特征(比如:视频的meta-data和视频内容信号)来作为它的表示。对于context,我们会使用以下特征(比如:人口统计学user demographics、设备device、时间time、地点location)。

为了处理可扩展性,如[10]描述相似,我们的推荐系统具有两个stages:候选生成、ranking。。。

3.1 候选生成

我们的视频推荐系统会使用多种候选生成算法,每种算法会捕获query video和candidate video间的某一种相似性。例如,一个算法会通过将query video的topics相匹配来生成candidates;另一个算法则会基于该视频和query video一起被观察的频次来检索candiate videos。我们构建了与[10]相似的一个序列模型通过用户历史来生成个性化候选视频。我们也会使用[25]中提到的技术来生成context-aware high recall relevant candiadtes。最后,所有的candidates都会放到一个set中,给ranking system进行打分。

3.2 Ranking

我们的ranking系统会从数百个candidates中生成一个ranked list。不同于candidate generation,它会尝试过滤掉大多数items并只保留相关items,ranking system的目标是提供一个ranked list以便具有最高utility的items可以展示在top前面。因此,我们使用大多数高级机器学习技术常用的NN结构,以便能足够的建模表现力来学习特征关联和utility关系。

4.模型结构

4.1 系统总览

我们的ranking system会从两类用户反馈数据中学习:

  • 1) engagement行为(比如:点击和观看)
  • 2) satisfaction行为(比如:喜欢(likes)和dismissals)

给定每个candidate,ranking system会使用该candidate、query和context的的特征作为输入,学习预测多个user behaviors。

对于问题公式,我们采用l2r的框架。我们会将ranking问题建模成:一个具有多个objectives的分类问题和回归问题的组合。给定一个query、candidate和context,ranking模型会预测用户采用actions(比如:点击、观看、likes和dismissals)的概率

为每个candidate做出预测的方法是point-wise的方法。作为对比,pair-wise或list-wise方法可以在两个或多个candidates的顺序上做出预测。pair-wise或list-wise方法可以被用于潜在提升推荐的多样性(diversity)。然而,我们基于serving的考虑主要使用point-wise ranking。在serving时,point-wise ranking很简单,可以高效地扩展到大量candidates上。作为比较,对于给定的candidates集合,pair-wise或list-wise方法需要对pairs或lists打分多次,以便找到最优的ranked list,限制了它们的可扩展性。

4.2 ranking objectives

我们使用user behaviors作为训练labels。由于用户可以对推荐items具有不同类型的behaviors,我们将我们的ranking system设计成支持多个objectives。每个objective的目标是预测一种类型的与user utility相关的user behavior。为了描述,以下我们将objectives分离成两个类别:engagement objectives和satisfaction objectives。

Engagement objectives会捕获user behaviors(比如:clicks和watches)。我们将这些行为的预测公式化为两种类型的任务:对于像点击这样行为的二元分类任务,以及对于像时长(time spent)相关的行为的回归任务。相似的,对于satisfaction objectives,我们将:与用户满意度相关的行为预测表示成二元分类任务或者回归任务。例如,像点击/like这样的行为可以公式化成一个二元分类任务,而像rating这样的行为被公式化成regression任务。对于二元分类任务,我们会计算cross entropy loss。而对于regression任务,我们会计算squared loss。

一旦多个ranking objectives和它们的问题类型被定下来,我们可以为这些预测任务训练一个multitask ranking模型。对于每个candidate,我们将它们作为多个预测的输入,并使用一个形如加权乘法的组合函数(combination function)来输出一个组合分(combined score)。该权值通过人工调参,以便在user engagements和user satisfactions上达到最佳效果。

4.3 使用MMoE建模任务关系和冲突

多目标的ranking systems常使用一个共享的bottom模型架构。然而,当任务间的关联很低时,这样的hard-parameter sharing技术有时会伤害到多目标学习。为了缓和多目标间的冲突,我们采用并扩展了一个最近发布的模型架构:MMoE(Multi-gate Mixture-of-Experts)【30】。

MMoE是一个soft-parameter sharing模型结构,它的设计是为了建模任务的冲突(conflicts)与关系(relation)。通过在跨多个任务上共享experts,它采用Mixture-of-Experts(MoE)结构到多任务学习中,而对于每个task也具有一个gating network进行训练。MMoE layer的设计是为了捕获任务的不同之处,对比起shared-bottom模型它无需大量模型参数。关键思路是,使用MoE layer来替代共享的ReLU layer,并为每个task添加一个独立的gating network。

对于我们的ranking system,我们提出在一个共享的hidden layer的top上添加experts,如图2b所示。这是因为MoE layer可以帮助学习来自input的模态信息(modularized information)。当在input layer的top上、或lower hidden layers上直接使用它时,它可以更好地建模多模态特征空间。然而,直接在input layer上应用MoE layer将极大增加模型training和serving的开销。这是因为,通常input layer的维度要比hidden layers的要更高

图2 使用MMoE来替换shared-bottom layers

我们关于expert networks的实现,等同于使用ReLU activations的multilayer perceptrons。给定task k、 prediction \(y_k\)、以及最后的hidden layer \(h^k\),对于task k的具有n个experts output的MMoE layer为:\(f^k(x)\),可以用以下的等式表示:

\[y_k = h^k (f^k(x)), \\ where \ \ f^k(x) = \sum\limits_{i=1}^n g_{(i)}^k(x) f_i(x)\]

…(1)

其中:

  • \(x \in R^d\)是一个lower-level shared hidden embedding
  • \(g^k\)是task k的gating network
  • \(g_{(i)}^k(x) \in R^n\)是第i个entry
  • \(f_i(x)\)是第i个expert

gating networks是使用一个softmax layer的关于input的简单线性转换。

\[g^k(x) = softmax(W_{g^k} x)\]

…(2)

其中:

\(W_{g^k} \in R^{n \times d}\)是线性变换的自由参数

与[32]中提到的sparse gating network对比,experts的数目会大些,每个训练样本只利用top experts,我们会使用一个相当小数目的experts。这样的设置是为了鼓励在多个gating networks间共享experts,并高效进行训练

4.4 建模和移除Position和Selection Baises

隐式反馈被广泛用于训练l2r模型。大量隐式反馈从user logs中抽取,从而训练复杂的DNN模型。然而,隐式反馈是有偏的,因为它由已经存在的ranking system所生成。Position Bias以及其它类型的selection biases,在许多不同的ranking问题中被研究和验证[2,23,41]。

在我们的ranking系统中,query是当前被观看过的视频,candidates是相关视频,用户倾向于点击和观看更接近toplist展示的视频,不管它们实际的user utility——根据观看过的视频的相关度以及用户偏好。我们的目标是移除从ranking模型中移除这样的position bias。在我们的训练数据中、或者在模型训练期间,建模和减小selection biases可以产生模型质量增益,打破由selection biases产生的feedback loop。

我们提出的模型结构与Wide&Deep模型结构相似。我们将模型预测分解为两个components:

  • 来自main tower的一个user-utility component
  • 以及来自shallow tower的一个bias component

特别的,我们使用对selection bias有贡献的features来训练了一个shallow tower,比如:position bias的position feature,接着将它添加到main model的最终logit中,如图3所示。

  • 在训练中,所有曝光(impressions)的positions都会被使用,有10%的feature drop-out rate来阻止模型过度依赖于position feature
  • 在serving时,position feature被认为是缺失的(missing)。

为什么我们将position feature和device feature相交叉(cross)的原因是:不同的position biases可以在不同类型的devices上观察到

图3 添加一个shallow side tower来学习selection bias(比如:position bias)

5.实验结果

本节我们描述了我们的ranking system实验,它会在youtube上推荐next watch的视频。使用由YouTube提供的隐式反馈,我们可以训练我们的ranking models,并进行offline和live实验。

Youtube的规模和复杂度是一个完美的测试。它有19亿月活用户。每天会有数千亿的user logs关于推荐结果与用户活动的交互。Youtube的一个核心产品是,提供推荐功能:为给定一个观看过的视频推荐接下来要看的,如图4所示。

图4 在youtube上推荐watch next

5.2.3 Gating Network分布

为了进一步理解MMoE是如何帮助multi-objective optimization的,我们为在每个expert上的每个task在softmax gating network中绘制了累积概率。

5.3 建模和减小Position Bias

使用用户隐式反馈作为训练数据的一个主要挑战是,很难建模在隐式反馈和true user utility间的gap。使用多种类型的隐式信号和多种ranking objectives,在serving时在item推荐中我们具有更多把手(knobs)来tune以捕获从模型预测到user utility的转换。然而,我们仍需要建模和减小在隐式反馈中普遍存在的biases。例如:在用户和当前推荐系统交互中引起的selection biases。

这里,我们使用提出的轻量级模型架构,来评估如何来建模和减小一种类型的selection biases(例如:position bias)。我们的解决方案避免了在随机实验或复杂计算上花费太多开销。

5.3.1 用户隐反馈分析

为了验证在我们训练数据中存在的position bias,我们对不同位置做了CTR分析。图6表明,在相对位置1-9的CTR分布。所图所示,我们看到,随着位置越来越低,CTR也会降得越来越低。在更高位置上的CTR越高,这是因为推荐更相关items和position bias的组合效果。我们提出的方法会采用一个shallow tower,我们展示了该方法可以分离user utility和position bias的学习。

图6 位置1-9的CTR

5.3.2 Baseline方法

为了评估我们提出的模型架构,我们使用以下的baseline方法进行对比。

  • 直接使用position feature做为一个input feature:这种简单方法已经在工业界推荐系统中广泛使用来消除position bias,大多数用于线性l2r rank模型中。
  • 对抗学习(Adversarial learning):受域适应(domain adaptation)和机器学习公平性(machine learning fairness)中Adversarial learning的广泛使用的启发,我们使用一个相似的技术来引入一个辅助任务(auxiliary task),它可以预测在训练数据中的position。随后,在BP阶段,我们不让梯度传递到主模型(main model)中,以确保主模型的预测不依赖于position feature。

5.3.3 真实流量实验结果

表2展示了真实流量实验结果。我们可以看到提出的方法通过建模和消除position biases可以极大提升参与度指标。

5.3.4 学到的position biases

图7展示了每个position学到的position biases。从图中可知,越低的position,学到的bias越小。学到的biases会使用有偏的隐式反馈(biased implicit feedback)来估计倾向评分(propensity scores)。使用足够训练数据通过模型训练运行,可以使我们有效学到减小position biases。

图7 每个position上学到的position bias

5.4 讨论

参考