Active Deep Learning验证码识别

Reading time ~1 minute

我们先来看下慕尼黑大学的paper:《CAPTCHA Recognition with Active Deep Learning》。

2.介绍

常用的方法是,以两个相互独立的步骤来检测图片中的文本:定位在文本中的词(words)或单个字符(characters)的区域,进行分割(segmenting)并接着对它们进行识别。另外,可以使用一个字典来排除不可能的词(words)。例如,Mori and Malik提出的方法来使用一个411个词的字典来识别CAPTCHAs。等等,然而,在现代CAPTCHAs中,单个字符不能轻易地使用矩形窗口进行分割,另外字符可以相互有交叠。这些CAPTCHAs与手写文本相类似,LeCun提出使用CNN来解决手写数字识别。这些CNNs被设计成用于构建layer by layer体系来执行分类任务。在2014年,Google fellow提出使用deep CNN来结合定位(localzation),分割(segmentation)以及多字符文本的识别。jaderberg等提出了一种在自然场景图片中的文本识别。然而,对于训练过程,它们人工模拟创建了一个非常大的文本图片的集合。相反的,我们则使用一个更小的训练集。通过探索Active Learning,我们在运行期对该神经网络进行微调(fine-tune),我们的网络接收已正确分好类但高度不确定的测试样本的前馈输入(feed)。

3.用于CAPTCHA识别的Deep CNN

图2. 用于captcha识别的卷积神经网络。该CNN由三个conv layer,三个pooling layer,两个fully-connected layer组成。最后的layer会输出所有数字的概率分布,我们可以由此计算预测数据(prediction)以及它的不确定度

我们提出了一种deep CNN来解决CAPTCHA问题。我们的方法在识别整个sequence时没有预分割(pre-segmentation)。我们使用如图2所示的网络结构。我们主要关注6数字的CAPTCHAs。每个数字(digit)在output layer中由62个神经元表示。我们定义了一个双向映射函数(bijection):$\sigma(x) $,它将一个字符 $ x \in { ‘0’ … ‘9’ , ‘A’ … ‘Z’, ‘a’ … ‘z’ } $映射到一个整数$ l \in { 0 , … , 61 }$上。

我们分配第一个62输出神经元(output neurons)到第一个序列数字上,第二个62神经元到第二个数字上,以此类推。这样,对于一个数字 $x_i$神经元索引n被计算成 $ n=i * 62 + \theta(x_i) $,其中$ i \in {0,…,5} $是数字索引,例如,output layer具有$ 6 * 62 = 372 $个神经元。为了预测一个数字,我们考虑相应的62个神经元,并将它们归一化成总和(sum)为1. 图4展示了一个神经网络输出的示例。这里,对于首个数字的预测字符索引(predicted character index)是$c_0=52$,预测标签为$ x=\theta^{-1}(c_0)=’q’$。

图4. 对于CAPTCHA “qnnivm”的神经网络样本输出. 左图:每个数字有62个输出。黑箱展示了第一个数字的输出。右图:第一个数字的概率分布。总和归一化为1.

4.使用 Active Learning来减少所需训练数据

为了获得一个好的分类accuracy,CNNs通常需要一个非常大的训练集。然而,收集数百万的人工标注的CAPTCHAs是不可行的。因而,我们提出了使用Active Learning(见图3)。主要思想是,只有在必要时才添加新的训练数据,例如,如果样本的信息量足够用于重新训练(re-learning)。这个决定是基于预测文本的不确定性,它会使用best-versus-secnond-best的策略来计算。

图3. Active Learning流程图. 我们首先在一个小的数据集上训练。接着,分类器被应用到一些新数据上,产生一个label prediction和一个相关的不确定度。有了该不确定度,分类器可以决定是否请求一个ground truth。在我们的case中,该query的完成通过使用prediction来解决给定的CAPTCHA,以及使用正确分类的样本。接着训练数据会增加,learning会被再次执行。在我们的方法中,我们使用一个deep CNN,它可以使用新加的训练样本被更有效的重训练。

4.1 获取不确定性

如上所述,通过将相应的网络输出的求和归一化为1,我们可以估计每个数字的预测分布。这样我们可以使用”best-vs-second-best”来计算整体的不确定度$ \eta $:

\[\eta = \frac{1}{d} * \sum_{i=1}^{d} \frac{argmax{P(x_i) \ argmaxP(x_i)}}}{argmaxP(x_i)}\]

…(2)

其中,$P(x_i)$是数字$d_i$所对应的所有网络输出集。这样,我们通过对每个数字的最佳预测(best prediction)来分割第二佳预测(second-best)。

4.2 查询groud truth信息

我们的CAPTCHA识别问题是场景独特的:无需人工交互就可以执行学习。我们通过只使用这些数据样本进行重新训练(re-training)即可完成这一点:分类器已经为它们提供了一个正常label。然而,简单使用所有这些正确分类的样本进行re-training将非常低效。事实上,训练会越来越频繁,因为分类器越来越好,因而会将这些样本正确分类。为了避免这一点,我们使用不确定值来表示上述情况:在每个learning round通过预测不确定度来区分正确分类的测试样本,以及使用最不确定的样本来进行retraining。我们在试验中发现,这种方法会产生了一个更小规模的训练样本,最不确定的样本对于学习来说信息量越大。

5.实验评估

我们在自动生成CAPTCHAs上试验了我们的方法。所有实验都使用caffe框架在NVIDIA GeForce GTC 750 Ti GPU上执行。

5.1 数据集生成

由于没有人工标注好的CAPTCHA数据集,我们使用脚本来生成CAPTCHAs。在自动生成期间,我们确保它在数据集上没有重复。

我们使用Cool PHP CAPTHCA框架来生成CAPTCHAs。它们由固定长度6个歪曲文本组成,类似于reCAPTCHA。它们具有size:180 x 50. 我们修改了该框架让它生成黑白色的图片。另外,我们已经禁止了阴影(shadow)和贯穿文本的线。我们也没有使用字典词,而是使用随机字符。因此,我们已经移除了该规则:每个第二字符必须是元音字符(vowel)。我们的字体是:“AntykwaBold”。图5展示了生成的一些样本。

图5: 实验中所使用的CAPTCHAs样本

5.2 网络的设计

我们使用如图2所示的网络。

  • 卷积层(conv layers)具有的size为:48, 64和128. 它们具有一个kernel size: 5x5,padding size:2。
  • pooling layers的window size为2x2。
  • 第一个和第三个pooling layers,还有第一个conv layer的stride为2.
  • 该网络有一个size=3072的fully connected layer,还有一个二级的fully connected layer(分类器)具有output size=372.

我们也在每个卷积层和第一个fully conntected layer上添加了ReLU和dropout。每次迭代的batch size为:64.

5.3 量化评估

我们使用SGD来训练网络。然而,对比其它方法,我们以独立的方式为所有数字训练该网络。learning rate通过$ \alpha = \alpha_{0} * (1+\gamma * t)^{-\beta} $的方式变更,其中,基础的learning rate为$ \alpha_{0} = 10 ^{-2}$,$ \beta=0.75, \gamma=10^{-4}$,其中,t为当前迭代轮数。我们设置momentum $ \mu=0.9 $,正则参数$\lambda=5 * 10^{-4} $。

最昂贵的部分是获取训练样本,我们的方法的目标是,降小初始训练集所需的size。因而,我们首先使用一个非常小的初始训练集(含10000张图片)来进行 $5 * 10^4$迭代。我们只达到9.6%的accuracy(迭代越大甚至会降低accuracy)。因而,我们希望使用Active Learning。

首先,我们再次使用含10000张图片的初始训练集进行 $5 * 10^4$迭代。然后,我们分类 $5 * 10^4$ 张测试图片。接着,我们从正确分类的数据中选取新的训练样本。我们可以全取,或者基于不确定度(uncertainty)只取$5 * 10^3$个样本:即有最高的不确定度,最低的不确定度,或者随机。不确定度的计算如4.1节所述。一旦新的选中的样本被添加到训练集中,我们重新训练该网络$5 * 10^4$迭代。接着,我们遵循相同的过程。我们在总共20次Active learning rounds rounds(epoch)中应用该算法。在每次$5 * 10^3$迭代后,在一个固定的验证集上计算accuracy。我们在正确但不确定的预测上获取了最好的表现(见图6)。所有的结果是两种运行的平均。

图6: Active Deep Learning的学习曲线. 上图:训练集在每次迭代后随样选中样本的增加而增加。当使用所有正确的样本时(黑色曲线),在$ 50 \dot 10^4 $我们停止向训练集添加新的图片,因为训练集的size已经超过了 $ 3 \dot 10^6 $。 下图:只在新样本上重新训练该网络。竖直的黑线表示每轮Active Learning epoch的结束。

然而,在训练集上增加样本数需要存储。再者,增加迭代次数可以从累积的集合上受益,但它会占据更长的训练时间。对于所有这些原因,我们建议:在每次迭代进行重训练网络时,只使用选中的样本。因而,我们再次使用使用含10000张图片的初始训练集进行 $5 \dot 10^4$迭代训练。接着,对$10^5$次测试图片进行分类,使用$10^4$正确分类的图片进行替换,并再训练$2.5 \dot 10^5$。接着,我们遵循该过程,根据下面的规则来减小迭代次数:在6轮前使用$2.5 \dot 10^4$,在6-11轮使用$2 \dot 10^4$,在11-16轮使用$1.5 \dot 10^4$,在16-21轮使用$ 1 \dot 10^4$,在21-40轮使用$5 \dot 10^3$。我们再次使用正确但不确定的预测来获取最好的表现(见图6)。这是合理的,因为该网络会正确分类图片,仍对预测仍非常不确定。因而,它可以事实上学到:它对于分类确定是正确的。一旦有争议:误分类样本的学习应产生更好的结果。事实上应该如此,然而实际上并不可能。

参考

Meta推荐系统-scaling laws介绍

meta在《Understanding Scaling Laws for Recommendation Models》讨论了推荐系统中的scaling law问题。# 摘要**规模(scale)**一直是提高机器学习性能的主要驱动力,理解**规模法则(scaling law...… Continue reading

kuaishou CQE时长预估介绍

Published on August 01, 2024

finalMLP介绍

Published on July 27, 2024